skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hendrixson, Brent E"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The Chiricahua Mountains in southeastern Arizona are renowned for their exceptional biodiversity and high levels of endemism. Morphological, genomic, behavioral, and distributional data were used to report the discovery of a remarkable new tarantula species from this range.Aphonopelma jacobiisp. nov.inhabits high-elevation mixed conifer forests in these mountains, but also co-occurs and shares its breeding period withA. chiricahua—a related member of theMarxispecies group—in mid-elevation Madrean evergreen oak and pine-oak woodlands. This marks the first documented case of syntopy between two montane endemics in the Madrean Archipelago and adds to our knowledge of this threatened region’s unmatched tarantula diversity in the United States. An emended diagnosis and redescription forA. chiricahuaare also provided based on several newly acquired and accurately identified specimens. Phylogenetic analyses of mitochondrial and genomic-scale data reveal thatA. jacobiisp. nov.is more closely related toA. marxi, a species primarily distributed on the Colorado Plateau, than toA. chiricahuaor the other Madrean Sky Island taxa. These data provide the evolutionary framework for better understanding the region’s complex biogeographic history (e.g., biotic assembly of the Chiricahua Mountains) and conservation of these spiders. 
    more » « less
  2. Abstract Montane species endemic to the “sky islands” of the North American southwest were significantly impacted by changing climates during the Pleistocene. We combined mitochondrial and genomic data with species distribution modelling to determine whetherAphonopelma marxi, a large tarantula from the nearby Colorado Plateau, was similarly impacted by glacial climates. Genetic analyses revealed that the species comprises three main clades that diverged in the Pleistocene. A clade distributed along the Mogollon Rim appears to have persisted in place during glacial conditions, whereas the other two clades probably colonized central and northeastern portions of the species' range from refugia in canyons. Climate models support this hypothesis for the Mogollon Rim, but late glacial climate data appear too coarse to detect suitable areas in canyons. Locations of canyon refugia could not be inferred from genomic analyses due to missing data, encouraging us to explore the effect of missing loci in phylogeographical inferences using RADseq. Results from analyses with varying amounts of missing data suggest that samples with large amounts of missing data can still improve inferences, and the specific loci that are missing matters more than the number of missing loci. This study highlights the profound impact of Pleistocene climates on tarantulas endemic to the Colorado Plateau, as well as the mixed nature of the region's fauna. Some animals recently colonized from nearby deserts as glacial climates receded, whereas others, like tarantulas, appear to have persisted on the Mogollon Rim and in refugia associated with the region's famous river‐cut canyons. 
    more » « less