skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hengst, Anton M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Lakes in direct contact with glaciers (ice-marginal lakes) are found across alpine and polar landscapes. Many studies characterize ice-marginal lake behavior over multi-decadal timescales using either episodic ~annual images or multi-year mosaics. However, ice-marginal lakes are dynamic features that experience short-term (i.e., day to year) variations in area and volume superimposed on longer-term trends. Through aliasing, this short-term variability could result in erroneous long-term estimates of lake change. We develop and implement an automated workflow in Google Earth Engine to quantify monthly behavior of ice-marginal lakes between 2013 and 2019 across south-central Alaska using Landsat 8 imagery. We employ a supervised Mahalanobis minimum-distance land cover classifier incorporating three datasets found to maximize classifier performance: shortwave infrared imagery, the normalized difference vegetation index (NDVI), and spatially filtered panchromatic reflectance. We observe physically-meaningful ice-marginal lake area variance on sub-annual timescales, with the median area fluctuation of an ice-marginal lake found to be 10.8% of its average area. The median signal (slow lake growth) to noise (physically-meaningful short-term area variability) ratio is 1.5:1, indicating that short-term variability is responsible for ~33% of observed area change in the median ice-marginal lake. The magnitude of short-term area variability is similar for ice-marginal and nonglacial lakes, suggesting that the cause of observed variations is not of glacial origin. These data provide a new context for interpreting behaviors observed in multi-decadal studies and encourage attention to sub-annual behavior of ice-marginal lakes even in long-term studies. 
    more » « less