Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Mass-loss influences stellar evolution, especially for massive stars with strong winds. Stellar wind bow shock nebulae driven by Galactic OB stars can be used to measure mass-loss rates ( ). The standoff distance (R0) between the star and the bow shock is set by momentum flux balance between the stellar wind and the surrounding interstellar medium (ISM). We created the Milky Way Project: mass-loss rates for OB Stars driving infrared bow shocks (MOBStIRS) using the online Zooniverse citizen science platform. We enlisted several hundred students to measureR0and two other projected shape parameters for 764 cataloged infrared bow shocks. MOBStIRS incorporated 1528 JPEG cutout images produced from Spitzer GLIMPSE and MIPSGAL survey data. Measurements were aggregated to compute shape parameters for each bow shock image deemed high quality by participants. The average statistical uncertainty onR0is 12.5% but varies from <5% to ∼40% among individual bow shocks, contributing significantly to the total error budget of . The derived nebular morphologies agree well with (magneto) hydrodynamic simulations of bow shocks driven by the winds of OB stars moving atVa = 10–40 km s−1with respect to the ambient ISM. A systematic correction toR0to account for viewing angle appears unnecessary for computing . Slightly more than half of MOBStIRS bow shocks are asymmetric, which could indicate anisotropic stellar winds, ISM clumping on sub-pc scales, time-dependent instabilities, and/or misalignments between the local ISM magnetic field and the star-bow-shock axis.more » « lessFree, publicly-accessible full text available May 27, 2026
-
Abstract Stellar bow shock nebulae are arcuate shock fronts formed by the interaction of radiation-driven stellar winds and the relative motion of the ambient interstellar material. Stellar bow shock nebulae provide a promising means to measure wind-driven mass loss, independent of other established methods. In this work, we characterize the stellar sources at the center of bow shock nebulae drawn from all-sky catalogs of 24μm–selected nebulae. We obtain new, low-resolution blue optical spectra for 104 stars and measure stellar parameters temperatureTeff, surface gravity , and projected rotational broadening . We perform additional photometric analysis to measure stellar radiusR*, luminosityL*, and visual-band extinctionAV. All but one of our targets are O and early B stars, with temperatures ranging fromT= 16.5 to 46.8 kK, gravities from 2.57 to 4.60, and from <100 to 400 km s−1. With the exception of rapid rotatorζOph, bow shock stars do not rotate at or near critical velocities. At least 60 of 103 (60%) OB bow shock stars are binaries, consistent with the multiplicity fraction of other OB samples. The sample shows a runaway fraction of 23%, with 19 stars havingv2D≥ 25 km s−1. Of the 19 runaways, at least 15 (≥79%) are binaries, favoring dynamical ejection over the binary supernova channel for producing runaways. We provide a comprehensive census of stellar parameters for bow shock stars, useful as a foundation for determining the mass-loss rates for OB-type stars—one of the single most critical factors in stellar evolution governing the production of neutron stars and black holes.more » « lessFree, publicly-accessible full text available July 23, 2026
-
Abstract We describe the discovery and characterization of TOI-7149 b, a 0.705 ± 0.075MJ, 1.18 ± 0.045RJgas giant on a ∼2.65 days period orbit transiting an M4V star with a mass of 0.344 ± 0.030M⊙and an effective temperature of 3363 ± 59 K. The planet was first discovered using NASA’s TESS mission, which we confirmed using a combination of ground-based photometry, radial velocities, and speckle imaging. The planet has one of the deepest transits of all known main-sequence planet hosts at ∼12% (Rp/R⋆∼ 0.33). Pushing the bounds of previous discoveries of giant exoplanets around M-dwarf stars (GEMS), TOI-7149 is one of the lowest mass M-dwarfs to host a transiting giant planet. We compare the sample of transiting GEMS to stars within 200 pc with a Gaia color–magnitude diagram and find that the GEMS hosts are likely to be high metallicity stars. We also analyze the sample of transiting giant planets using the nonparametricMRExoframework to compare the bulk density of warm Jupiters across stellar masses. We confirm our previous result that transiting Jupiters around early M-dwarfs have similar masses and densities to warm Jupiters around FGK stars, and extend this to mid M-dwarfs, thereby suggesting a potential commonality in their formation mechanisms.more » « lessFree, publicly-accessible full text available September 3, 2026
-
Abstract We present the discovery of TOI-6303b and TOI-6330b, two massive transiting super-Jupiters orbiting a M0 and a M2 dwarf star, respectively, as part of the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) survey. These were detected by NASA’s Transiting Exoplanet Survey Satellite and then confirmed via ground-based photometry and radial velocity observations with the Habitable-zone Planet Finder. TOI-6303b has a mass of 7.84 ± 0.31MJ, a radius of 1.03 ± 0.06RJ, and an orbital period of 9.485 days. TOI-6330b has a mass of 10.00 ± 0.31MJ, a radius of 0.97 ± 0.03RJ, and an orbital period of 6.850 days. We put these planets in the context of super-Jupiters around M dwarfs discovered from radial-velocity surveys, as well as recent discoveries from astrometry. These planets have masses that can be attributed to two dominant planet formation mechanisms—gravitational instability and core accretion. Their masses necessitate massive protoplanetary disks that should either be gravitationally unstable, i.e., forming through gravitational instability, or be among the most massive protoplanetary disks known to date to form objects through core accretion. We also discuss their possible migration mechanisms via their eccentricity distribution.more » « lessFree, publicly-accessible full text available June 2, 2026
-
Abstract Brown dwarfs bridge the gap between stars and planets, providing valuable insight into both planetary and stellar-formation mechanisms. Yet the census of transiting brown-dwarf companions, in particular around M-dwarf stars, remains incomplete. We report the discovery of two transiting brown dwarfs around low-mass hosts using a combination of space- and ground-based photometry along with near-infrared radial velocities. We characterize TOI-5389Ab ( ) and TOI-5610b ( ), two moderately massive brown dwarfs orbiting early M-dwarf hosts (Teff = 3569 ± 59 K and 3618 ± 59 K, respectively). For TOI-5389Ab, the best fitting parameters are periodP = 10.40046 ± 0.00002 days, radius RJ, and low eccentricity . In particular, this constitutes one of the most extreme substellar-stellar companion-to-host mass ratios ofq= 0.150. For TOI-5610b, the best-fitting parameters are periodP = 7.95346 ± 0.00002 days, radius RJ, and moderate eccentricity . Both targets are expected to have shallow, but potentially observable, occultations: ≲500 ppm in the JohnsonKband. A statistical analysis of M-dwarf/BD systems reveals for the first time that those at short orbital periods (P < 13 days) exhibit a dearth of 13MJ < MBD < 40MJcompanions (q < 0.1) compared to those at slightly wider separations.more » « lessFree, publicly-accessible full text available April 3, 2026
-
Abstract We present the confirmation of TOI-5573 b, a Saturn-sized exoplanet on an 8.79 days orbit around an early M dwarf (3790 K, 0.59R⊙, 0.61M⊙, 12.30 Jmag). TOI-5573 b has a mass of M⊕(0.35 ± 0.06MJup) and a radius of 9.75 ± 0.47R⊕(0.87 ± 0.04RJup), resulting in a density of g cm−3, akin to that of Saturn. The planet was initially discovered by the Transiting Exoplanet Survey Satellite (TESS) and confirmed using a combination of 11 transits from four TESS Sectors (20, 21, 47, and 74), ground-based photometry from the Red Buttes Observatory, and high-precision radial velocity data from the Habitable-zone Planet Finder and NN-EXPLORE Exoplanet Investigations with Doppler spectrographs, achieving a 5σprecision on the planet’s mass. TOI-5573 b is one of the coolest Saturn-like exoplanets discovered around an M-dwarf, with an equilibrium temperature of only 528 ± 10 K, making it a valuable target for atmospheric characterization. Saturn-like exoplanets around M dwarfs likely form through core accretion, with increased disk opacity slowing gas accretion and limiting their mass. The host star’s supersolar metallicity supports core accretion, but uncertainties in M-dwarf metallicity estimates complicate definitive conclusions. Compared to other GEMS (Giant Exoplanets around M-dwarf Stars) orbiting metal-rich stars, TOI-5573 b aligns with the observed pattern that giant planets preferentially form around M-dwarfs with supersolar metallicity. Further high-resolution spectroscopic observations are needed to explore the role of stellar metallicity in shaping the formation and properties of giant exoplanets like TOI-5573 b.more » « lessFree, publicly-accessible full text available June 26, 2026
An official website of the United States government
