skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Henry, Todd J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    We present the optical photometric variability of 32 planet-hosting M dwarfs within 25 pc over timescales of months to decades. The primary goal of this project—A Trail to Life Around Stars (ATLAS)—is to follow the trail to life by revealing nearby M dwarfs with planets that are also “quiet,” which may make them more amiable to habitability. There are 69 reported exoplanets orbiting the 32 stars discussed here, providing a rich sample of worlds for which environmental evaluations are needed. We examine the optical flux environments of these planets over month-long timescales for 23 stars observed by TESS, and find that 17 vary by less than 1% (∼11 mmag). All 32 stars are being observed at the CTIO/SMARTS 0.9 m telescope, with a median duration of 19.1 yr of optical photometric data in theVRIbands. We find over these extended timescales that six stars show optical flux variations less than 2%, 25 vary from 2% to 6% (∼22–67 mmag), and only one, Proxima Centauri, varies by more than 6%. Overall, LHS 1678 exhibits the lowest optical variability levels measured over all timescales examined, thereby providing one of the most stable photometric environments among the planets reported around M dwarfs within 25 pc. More than 600 of the nearest M dwarfs are being observed at the 0.9 m telescope in the RECONS program that began in 1999, and many more planet hosts will undoubtedly be revealed, providing more destinations to be added to the ATLAS sample in the future.

     
    more » « less
  2. Abstract

    The Differential Speckle Survey Instrument (DSSI) was relocated to the Astrophysical Research Consortium 3.5 m telescope at Apache Point Observatory (APO) in early 2022. Here we present results from the first year of observations along with an updated instrument description for DSSI at APO, including a detailed description of a new internal slit mask assembly used to measure the instrument plate scale from first principles. Astrometric precision for DSSI at APO during this time was measured to be 2.06 ± 0.11 mas, with a photometric precision of 0.14 ± 0.04 mag. Results of 40 resolved binary systems are reported, including two that were previously unknown to be binaries: HIP 7535 and HIP 9603. We also present updated orbital fits for two systems: HIP 93903 and HIP 100714. Finally, we report updated or confirmed dispositions for five Kepler Objects of Interest (KOIs) that were previously explored in Colton et al., using speckle imaging to discern common proper motions pairs from line of sight companions: KOI-270, KOI-959, KOI-1613, KOI-1962, and KOI-3214AB.

     
    more » « less
  3. Abstract

    As part of a comprehensive effort to characterize the nearest stars, the CHIRON echelle spectrograph on the CTIO/SMARTS 1.5 m telescope is being used to acquire high-resolution (R= 80,000) spectra of K dwarfs within 50 pc. This paper provides spectral details about 35 K dwarfs from five benchmark sets with estimated ages spanning 20 Myr–5.7 Gyr. Four spectral age and activity indicators are tested, three of which aligned with the estimated ages of the benchmark groups—the Naidoublet (5889.95 and 5895.92 Å), the Hαline (6562.8 Å), and the Liiresonance line (6707.8 Å). The benchmark stars are then used to evaluate seven field K dwarfs exhibiting variable radial velocities for which initial CHIRON data did not show obvious companions. Two of these stars are estimated to be younger than 700 Myr, while one exhibits stellar activity unusual for older K-dwarf field stars and is possibly young. The four remaining stars turn out to be spectroscopic binaries, two of which are being reported here for the first time with orbital periods found using CHIRON data. Spectral analysis of the combined sample of 42 benchmark and variable radial velocity stars indicates temperatures ranging from 3900 to 5300 K and metallicities from −0.4 < [Fe/H] < +0.2. We also determinelogg=4.54.7for main-sequence K dwarfs. Ultimately, this study will target several thousand of the nearest K dwarfs and provide results that will serve present and future studies of stellar astrophysics and exoplanet habitability.

     
    more » « less
  4. Abstract

    We present the first results of a multiyear program to map the orbits of M-dwarf multiples within 25 pc. The observations were conducted primarily during 2019–2020 using speckle interferometry at the Southern Astrophysical Research Telescope in Chile, using the High-Resolution Camera mounted on the adaptive optics module (HRCam+SAM). The sample of nearby M dwarfs is drawn from three sources: multiples from the RECONS long-term astrometric monitoring program at the SMARTS 0.9 m; known multiples, for which these new observations will enable or improve orbit fits; and candidate multiples flagged by their astrometric fits in Gaia Data Release 2 (DR2). We surveyed 333 of our 338 M dwarfs via 830 speckle observations, detecting companions for 63% of the stars. Most notably, this includes new companions for 76% of the subset selected from Gaia DR2. In all, we report the first direct detections of 97 new stellar companions to the observed M dwarfs. Here we present the properties of those detections, the limits of each nondetection, and five orbits with periods 0.67–29 yr already observed as part of this program. Companions detected have projected separations of 0.″024–2.″0 (0.25–66 au) from their primaries and have ΔI≲ 5.0 mag. This multiyear campaign will ultimately map complete orbits for nearby M dwarfs with periods up to 3 yr, and provide key epochs to stretch orbital determinations for binaries to 30 yr.

     
    more » « less
  5. Abstract We present the visual orbits of four spectroscopic binary stars, HD 61859, HD 89822, HD 109510, and HD 191692, using long baseline interferometry with the CHARA Array. We also obtained new radial velocities from echelle spectra using the APO 3.5 m, CTIO 1.5 m, and Fairborn Observatory 2.0 m telescopes. By combining the astrometric and spectroscopic observations, we solve for the full, three-dimensional orbits and determine the stellar masses to 1%–12% uncertainty and distances to 0.4%–6% uncertainty. We then estimate the effective temperature and radius of each component star through Doppler tomography and spectral energy distribution analyses. We found masses of 1.4–3.5 M ⊙ , radii of 1.5–4.7 R ⊙ , and temperatures of 6400–10,300 K. We then compare the observed stellar parameters to the predictions of the stellar evolution models, but found that only one of our systems fits well with the evolutionary models. 
    more » « less
  6. Abstract

    In order to assess the multiplicity statistics of stars across spectral types and populations in a volume-limited sample, we censused nearby stars for companions with Robo-AO. We report on observations of 1157 stars of all spectral types within 25 pc with decl. >−13° searching for tight companions. We detected 154 companion candidates with separations ranging from ∼0.″15 to 4.″0 and magnitude differences up to Δmi7using the robotic adaptive optics instrument Robo-AO. We confirmed physical association from Gaia EDR3 astrometry for 53 of the companion candidates, 99 remain to be confirmed, and two were ruled out as background objects. We complemented the high-resolution imaging companion search with a search for comoving objects with separations out to 10,000 au in Gaia EDR3, which resulted in an additional 147 companions registered. Of the 301 total companions reported in this study, 49 of them are new discoveries. Out of the 191 stars with significant acceleration measurements in the Hipparcos–Gaia catalog of accelerations, we detect companions around 115 of them, with the significance of the acceleration increasing as the companion separation decreases. From this survey, we report the following multiplicity fractions (compared to literature values): 40.9% ± 3.0% (44%) for FGK stars and 28.2% ± 2.3% (27%) for M stars, as well as higher-order fractions of 5.5% ± 1.1% (11%) and 3.9% ± 0.9% (5%) for FGK stars and M-type stars, respectively.

     
    more » « less
  7. null (Ed.)
  8. null (Ed.)