Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Synopsis Investigating how animals navigate space and time is key to understanding communication. Small differences in spatial positioning or timing can mean the difference between a message received and a missed connection. However, these spatio-temporal dynamics are often overlooked or are subject to simplifying assumptions in investigations of animal signaling. This special issue addresses this significant knowledge gap by integrating work from researchers with disciplinary backgrounds in neuroscience, cognitive ecology, sensory ecology, computer science, evolutionary biology, animal behavior, and philosophy. This introduction to the special issue outlines the novel questions and approaches that will advance our understanding of spatio-temporal dynamics of animal communication. We highlight papers that consider the evolution of spatio-temporal dynamics of behavior across sensory modalities and social contexts. We summarize contributions that address the neural and physiological mechanisms in senders and receivers that shape communication. We then turn to papers that introduce cutting edge technologies that will revolutionize our ability to track spatio-temporal dynamics of individuals during social encounters. The interdisciplinary collaborations that gave rise to these papers emerged in part from a novel workshop-symposium model, which we briefly summarize for those interested in fostering syntheses across disciplines.more » « less
-
Synopsis The term “cognitive template” originated from work in human-based cognitive science to describe a literal, stored, neural representation used in recognition tasks. As the study of cognition has expanded to nonhuman animals, the term has diffused to describe a wider range of animal cognitive tools and strategies that guide action through the recognition of and discrimination between external states. One potential reason for this nonstandardized meaning and variable employment is that researchers interested in the broad range of animal recognition tasks enjoy the simplicity of the cognitive template concept and have allowed it to become shorthand for many dissimilar or unknown neural processes without deep scrutiny of how this metaphor might comport with underlying neurophysiology. We review the functional evidence for cognitive templates in fields such as perception, navigation, communication, and learning, highlighting any neural correlates identified by these studies. We find that the concept of cognitive templates has facilitated valuable exploration at the interface between animal behavior and cognition, but the quest for a literal template has failed to attain mechanistic support at the level of neurophysiology. This may be the result of a misled search for a single physical locus for the “template” itself. We argue that recognition and discrimination processes are best treated as emergent and, as such, may not be physically localized within single structures of the brain. Rather, current evidence suggests that such tasks are accomplished through synergies between multiple distributed processes in animal nervous systems. We thus advocate for researchers to move toward a more ecological, process-oriented conception, especially when discussing the neural underpinnings of recognition-based cognitive tasks.more » « less
-
Abstract Complex biological traits often originate by integrating previously separate parts, but the organismal functions of these precursors are challenging to infer. If we can understand the ancestral functions of these precursors, it could help explain how they persisted and how they facilitated the origins of complex traits. Animal eyes are some of the best studied complex traits, and they include many parts, such as opsin‐based photoreceptor cells, pigment cells, and lens cells. Eye evolution is understood through conceptual models that argue these parts gradually came together to support increasingly sophisticated visual functions. Despite the well‐accepted logic of these conceptual models, explicit comparative studies to identify organismal functions of eye precursors are lacking. Here, we investigate how precursors functioned before they became part of eyes in Cnidaria, a group formed by sea anemones, corals, and jellyfish. Specifically, we test whether ancestral photoreceptor cells regulated the discharge of cnidocytes, the expensive single‐use cells with various functions including prey capture, locomotion, and protection. Similar to a previous study ofHydra, we show an additional four distantly related cnidarian groups discharge significantly more cnidocytes when exposed to dim blue light compared with bright blue light. Our comparative analyses support the hypothesis that the cnidarian ancestor was capable of modulating cnidocyte discharge with light, which we speculate uses an opsin‐based phototransduction pathway homologous to that previously described inHydra. Although eye precursors might have had other functions like regulating timing of spawning, our findings are consistent with the hypothesis that photoreceptor cells which mediate cnidocyte discharge predated eyes, perhaps facilitating the prolific origination of eyes in Cnidaria.more » « less
An official website of the United States government
