Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Stewart, Frank J (Ed.)ABSTRACT Here, we present the draft genome sequence of strain LSUCC0117, a representative of the abundant aquatic BAL58 Betaproteobacteria group which we isolated from a coastal site in the northern Gulf of Mexico. The genome is estimated at over 99% complete, with a genome size of 2,687,225 bp.more » « less
-
Stewart, Frank J (Ed.)ABSTRACT Here we present the genomes of four marine agarolytic bacteria belonging to the Bacteroidota and Proteobacteria. Two genomes are closed and two are in draft form, but all are at least 99% complete and offer new opportunities to study agar-degradation in marine bacteria.more » « less
-
BackgroundEchinoderms play crucial roles in coral reef ecosystems, where they are significant detritivores and herbivores. The phylum is widely known for its boom and bust cycles, driven by food availability, predation pressure and mass mortalities. Hence, surveillance of potential pathogens and associates of grossly normal specimens is important to understanding their roles in ecology and mass mortality. MethodsWe performed viral surveillance in two common coral reef echinoderms,Diadema antillarumandHolothuria floridana, using metagenomics. Urchin specimens were obtained during the 2022Diadema antillarumscuticociliatosis mass mortality event from the Caribbean and grossly normalH. floridanaspecimens from a reef in Florida. Viral metagenomes were assembled and aligned against viral genomes and protein encoding regions. Metagenomic reads and previously sequenced transcriptomes were further investigated for putative viral elements by Kraken2. ResultsD. antillarumwas devoid of viruses typically seen in echinoderms, butH. floridanayielded viral taxa similar to those found in other sea cucumbers, includingPisoniviricetes(Picornaviruses),Ellioviricetes(Bunyaviruses), andMagsaviricetes(Nodaviruses). The lack of viruses detected inD. antillarummay be due to the large amount of host DNA in viral metagenomes, or because viruses are less abundant inD. antillarumtissues when compared toH. floridanatissues. Our results also suggest that RNA amplification approach may influence viral representation in viral metagenomes. While our survey was successful in describing viruses associated with both echinoderms, our results indicate that viruses are less pronounced inD. antillarumthan in other echinoderms. These results are important in context of wider investigation on the association between viruses andD. antillarummass mortalities, since the conventional method used in this study was unsuccessful.more » « less
-
Ortega, Jorge (Ed.)Abstract Faunivorous mammals with simple guts are thought to rely primarily on endogenously produced enzymes to digest food, in part because they lack fermentation chambers for facilitating mutualistic interactions with microbes. However, variation in microbial community composition along the length of the gastrointestinal tract has yet to be assessed in faunivorous species with simple guts. We tested for differences in bacterial taxon abundances and community compositions between the small intestines and colons of 26 individuals representing four species of shrew in the genus Crocidura. We sampled these hosts from a single locality on Sulawesi Island, Indonesia, to control for potential geographic and temporal variation. Bacterial community composition differed significantly between the two gut regions and members of the family Mycoplasmataceae contributed substantially to these differences. Three operational taxonomic units (OTUs) of an unclassified genus in this family were more abundant in the small intestine, whereas 1 OTU of genus Ureaplasma was more abundant in the colon. Species of Ureaplasma encode an enzyme that degrades urea, a metabolic byproduct of protein catabolism. Additionally, a Hafnia–Obesumbacterium OTU, a genus known to produce chitinase in bat gastrointestinal tracts, was also more abundant in the colon compared to the small intestine. The presence of putative chitinase- and urease-producing bacteria in shrew guts suggests mutualisms with microorganisms play a role in facilitating the protein-rich, faunivorous diets of simple gut mammals.more » « less
-
Makhalanyane, Thulani P. (Ed.)One goal of marine microbiologists is to uncover the roles various microorganisms are playing in biogeochemical cycles. Success in this endeavor relies on differentiating groups of microbes and circumscribing their relationships. An early-diverging group (subclade V) of the most abundant bacterioplankton, SAR11, has recently been proposed as a separate lineage that does not share a most recent common ancestor. But beyond phylogenetics, little has been done to evaluate how these organisms compare with SAR11. Our work leverages dozens of new genomes to demonstrate the similarities and differences between subclade V and SAR11. In our analysis, we also establish that subclade V is synonymous with a group of bacteria established from 16S rRNA gene sequences, AEGEAN-169. Subclade V/AEGEAN-169 has clear metabolic distinctions from SAR11 and their shared traits point to remarkable convergent evolution if they do not share a most recent common ancestor.more » « less
-
Abstract The Order Pelagibacterales (SAR11) is the most abundant group of heterotrophic bacterioplankton in global oceans and comprises multiple subclades with unique spatiotemporal distributions. Subclade IIIa is the primary SAR11 group in brackish waters and shares a common ancestor with the dominant freshwater IIIb (LD12) subclade. Despite its dominance in brackish environments, subclade IIIa lacks systematic genomic or ecological studies. Here, we combine closed genomes from new IIIa isolates, new IIIa MAGS from San Francisco Bay (SFB), and 460 highly complete publicly available SAR11 genomes for the most comprehensive pangenomic study of subclade IIIa to date. Subclade IIIa represents a taxonomic family containing three genera (denoted as subgroups IIIa.1, IIIa.2, and IIIa.3) that had distinct ecological distributions related to salinity. The expansion of taxon selection within subclade IIIa also established previously noted metabolic differentiation in subclade IIIa compared to other SAR11 subclades such as glycine/serine prototrophy, mosaic glyoxylate shunt presence, and polyhydroxyalkanoate synthesis potential. Our analysis further shows metabolic flexibility among subgroups within IIIa. Additionally, we find that subclade IIIa.3 bridges the marine and freshwater clades based on its potential for compatible solute transport, iron utilization, and bicarbonate management potential. Pure culture experimentation validated differential salinity ranges in IIIa.1 and IIIa.3 and provided detailed IIIa cell size and volume data. This study is an important step forward for understanding the genomic, ecological, and physiological differentiation of subclade IIIa and the overall evolutionary history of SAR11.more » « less
-
Poretsky, Rachel (Ed.)ABSTRACT Among the thousands of species that comprise marine bacterioplankton communities, most remain functionally obscure. One key cosmopolitan group in this understudied majority is the OM252 clade of Gammaproteobacteria . Although frequently found in sequence data and even previously cultured, the diversity, metabolic potential, physiology, and distribution of this clade has not been thoroughly investigated. Here, we examined these features of OM252 bacterioplankton using a newly isolated strain and genomes from publicly available databases. We demonstrated that this group constitutes a globally distributed novel genus (“ Candidatus Halomarinus”), sister to Litoricola , comprising two subclades and multiple distinct species. OM252 organisms have small genomes (median, 2.21 Mbp) and are predicted obligate aerobes capable of alternating between chemoorganoheterotrophic and chemolithotrophic growth using reduced sulfur compounds as electron donors. Subclade I genomes encode genes for the Calvin-Benson-Bassham cycle for carbon fixation. One representative strain of subclade I, LSUCC0096, had extensive halotolerance and a mesophilic temperature range for growth, with a maximum rate of 0.36 doublings/h at 35°C. Cells were curved rod/spirillum-shaped, ∼1.5 by 0.2 μm. Growth yield on thiosulfate as the sole electron donor under autotrophic conditions was roughly one-third that of heterotrophic growth, even though calculations indicated similar Gibbs energies for both catabolisms. These phenotypic data show that some “ Ca. Halomarinus” organisms can switch between serving as carbon sources or sinks and indicate the likely anabolic cost of lithoautotrophic growth. Our results thus provide new hypotheses about the roles of these organisms in global biogeochemical cycling of carbon and sulfur. IMPORTANCE Marine microbial communities are teeming with understudied taxa due to the sheer numbers of species in any given sample of seawater. One group, the OM252 clade of Gammaproteobacteria , has been identified in gene surveys from myriad locations, and one isolated organism has even been genome sequenced (HIMB30). However, further study of these organisms has not occurred. Using another isolated representative (strain LSUCC0096) and publicly available genome sequences from metagenomic and single-cell genomic data sets, we examined the diversity within the OM252 clade and the distribution of these taxa in the world’s oceans, reconstructed the predicted metabolism of the group, and quantified growth dynamics in LSUCC0096. Our results generate new knowledge about the previously enigmatic OM252 clade and point toward the importance of facultative chemolithoautotrophy for supporting some clades of ostensibly “heterotrophic” taxa.more » « less