skip to main content

Search for: All records

Creators/Authors contains: "Herbert, Ellen R."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    Ecosystem connectivity tends to increase the resilience and function of ecosystems responding to stressors. Coastal ecosystems sequester disproportionately large amounts of carbon, but rapid exchange of water, nutrients, and sediment makes them vulnerable to sea level rise and coastal erosion. Individual components of the coastal landscape (i.e., marsh, forest, bay) have contrasting responses to sea level rise, making it difficult to forecast the response of the integrated coastal carbon sink. Here we couple a spatially-explicit geomorphic model with a point-based carbon accumulation model, and show that landscape connectivity, in-situ carbon accumulation rates, and the size of the landscape-scale coastal carbon stock all peak at intermediate sea level rise rates despite divergent responses of individual components. Progressive loss of forest biomass under increasing sea level rise leads to a shift from a system dominated by forest biomass carbon towards one dominated by marsh soil carbon that is maintained by substantial recycling of organic carbon between marshes and bays. These results suggest that climate change strengthens connectivity between adjacent coastal ecosystems, but with tradeoffs that include a shift towards more labile carbon, smaller marsh and forest extents, and the accumulation of carbon in portions of the landscape more vulnerable to sea level rise and erosion.

    more » « less
  2. null (Ed.)
  3. null (Ed.)
  4. null (Ed.)
  5. Abstract

    Tidal freshwater marshes can protect downstream ecosystems from eutrophication by intercepting excess nutrient loads, but recent studies in salt marshes suggest nutrient loading compromises their structural and functional integrity. Here, we present data on changes in plant biomass, microbial biomass and activity, and soil chemistry from plots in a tidal freshwater marsh on the Altamaha River (GA) fertilized for 10 yr with nitrogen (+N), phosphorus (+P), or nitrogen and phosphorus (+NP). Nitrogen alone doubled aboveground biomass and enhanced microbial activity, specifically rates of potential nitrification, denitrification, and methane production measured in laboratory incubations. Phosphorus alone increased soil P and doubled microbial biomass but did not affect microbial processes. Nitrogen or P alone decreased belowground biomass and soil carbon (C) whereas +NP increased aboveground biomass, microbial biomass and N cycling, and N, P, and C assimilation and burial more than either nutrient alone. Our findings suggest differential nutrient limitation of tidal freshwater macrophytes by N and microbes by P, similar to what has been observed in salt marshes. Macrophytes outcompete microbes for P in response to long‐term N and P additions, leading to increased soil C storage through increased inputs of belowground biomass relative to N and P added singly. The susceptibility of tidal freshwater marshes to long‐term nutrient enrichment and, hence their ability to mitigate eutrophication will depend on the quantity and relative proportion of N vs. P entering estuaries and tidal wetlands.

    more » « less
  6. Abstract

    An accelerating global rate of sea level rise (SLR), coupled with direct human impacts to coastal watersheds and shorelines, threatens the continued survival of salt marshes. We developed a new landscape‐scale numerical model of salt marsh evolution and applied it to marshes in the Plum Island Estuary (Massachusetts, U.S.A.), a sediment‐deficient system bounded by steep uplands. To capture complexities of vertical accretion across the marsh platform, we employed a novel approach that incorporates spatially variable suspended sediment concentrations and biomass of multiple plant species as functions of elevation and distance from sediment sources. The model predicts a stable areal extent of Plum Island marshes for a variety of SLR scenarios through 2100, where limited marsh drowning is compensated by limited marsh migration into adjacent uplands. Nevertheless, the model predicts widespread conversion of high marsh vegetation to low marsh vegetation, and accretion deficits that indicate eventual marsh drowning. Although sediment‐deficient marshes bounded by steep uplands are considered extremely vulnerable to SLR, our results highlight that marshes with high elevation capital can maintain their areal extent for decades to centuries even under conditions in which they will inevitably drown.

    more » « less