skip to main content


The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 5:00 PM ET until 11:00 PM ET on Friday, June 21 due to maintenance. We apologize for the inconvenience.

Search for: All records

Creators/Authors contains: "Herbort, James"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    ABSTRACT Two intermolecular hydroalkenylation reactions of 1,6-enynes are presented which yield substituted 5-membered carbo- and -heterocycles. This reactivity is enabled by a cationic bis-diphenylphosphinopropane (DPPP)CoI species which forms a cobaltacyclopentene intermediate by oxidative cyclization of the enyne. This key species interacts with alkenes in distinct fashion, depending on the identity of the coupling partner to give regiodivergent products. Simple alkenes undergo insertion reactions to furnish 1,3-dienes whereby one of the alkenes is tetrasubstituted. When acrylates are employed as coupling partners, the site of intermolecular C-C formation shifts from the alkyne to the alkene motif of the enyne, yield-ing Z-substituted-acrylate derivatives. Computational studies provide support for our experimental observations and show that the turnover-limiting steps in both reactions are the interactions of the alkenes with the cobaltacyclopentene intermediate via either a 1,2-insertion in the case of ethylene, or an unexpected b-C-H activation in the case of most acrylates. Thus, the H syn to the ester is activated through the coordination of the acrylate carbonyl to the cobaltacycle intermediate, which explains the uncommon Z-selectivity and regiodivergence. Variable time normalization analysis (VTNA) of the kinetic data reveals a dependance upon the concentration of cobalt, acrylate, and activator. A KIE of 2.1 was observed with methyl methacrylate in separate flask experiments, indicating that C-H cleavage is the turnover-limiting step in the catalytic cycle. Lastly, a Hammett study of aryl-substituted enynes yields a rho- value of -0.4, indicating that more electron-rich substituents accelerate the rate of the reaction. 
    more » « less
  2. null (Ed.)
    Synthesis of complex organic molecules has relied heavily on the use of stoichiometric organometallic reagents. Strategies such as metal-catalyzed cycloisomerization bypass the need for these oftentimes harsh reagents and are valuable for constructing cyclic frameworks from simple unsaturated carbon sources. An important extension of this cyclization methodology is the incorporation of additional components accompanying the initial annulation. Through our studies we learned that cationic cobalt complexes can catalyze an intramolecular enyne cyclization, and subsequently form carbon-carbon bonds through intermolecular incorporation of feedstock alkenes into a presumed metallacycle intermediate. This strategy allows access to complex alicyclic and heterocyclic compounds from an earth abundant metal catalyst and readily available materials. Of note, is the complimentary reactivity and selectivity in this newly discovered cationic cobalt reaction manifold as compared to analogous rhodium and ruthenium catalysis. We discovered that product selectivity is dependent upon alkene identity, with activated alkenes and unactivated alkenes inserting into opposite sides of the cobaltacyclopentene intermediate. This remarkable selectivity provides access to two different motifs accompanying the cycle formed, either a linear diene or a styrene with a pendant functionalized acrylate. Over 25 different medicinally relevant pyrrolidines were accessed in this fashion and further elaborated on by post-synthetic modifications. In addition, the enantioselective variant of this reaction is also explored with selectivities up to 77% ee. 
    more » « less
  3. null (Ed.)
    A radical cascade strategy for the modular synthesis of five-membered heteroarenes ( e.g. oxazoles, imidazoles) from feedstock reagents ( e.g. alcohols, amines, nitriles) has been developed. This double C–H oxidation is enabled by in situ generated imidate and acyloxy radicals, which afford regio- and chemo-selective β C–H bis-functionalization. The broad synthetic utility of this tandem hydrogen atom transfer (HAT) approach to access azoles is included, along with experiments and computations that provide insight into the selectivity and mechanism of both HAT events. 
    more » « less