Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Evans, Alistair; Peecook, Brandon; Bai, Bin; Benito, Juan; Capobianco, Alessio; Chapelle, Kimberley; Chiarenza, Alfio; Davis, Brian; Delcourt, Rafael; Ehret, Dana (Ed.)Interpretations of extinct vertebrate anatomy, behavior, and life history are built upon comparative anatomy data from neontological collections. Ideally, these interpretations are informed by metadata collected while the organism was alive such as diet, mass throughout life, social relationships, and reproductive history. Unfortunately, these data are not available for many specimens as natural history collections have focused on wild-caught individuals for which mass at collection, sex, and collection locality are typically the only associated data. In contrast, extensive life-history data are collected from organisms in sustained human care, but transferring these data from zoos to natural history collections is not standardized or prioritized. The Duke Lemur Center (DLC) has been designing a database that allows researchers access to morphological and life-history data derived from animals that were part of the living research colony. The DLC is home to over 200 lemurs representing 16 different species. The colony has access to open air, multi-acre habitats. For over 50 years the AZA-accredited DLC has been a platform for non-invasive research on strepsirrhine primates and the DLC Museum is the repository for DLC specimens and fossils related to the evolution of primates. The colony’s breeding records, veterinary care, husbandry data, locomotor behaviors, and diets are recorded by researchers and staff. However, these data are disaggregated, making it difficult to explore. The DLC Data Team started by generating microCT scans of the osteology and frozen cadaver collection to make morphological data available on MorphoSource. Preserved specimens were rehoused and inventoried. Now we are using DLC-developed REDCap database management tools to network scans with life-history records, building a database that researchers can use to explore questions such as individual variation in tooth wear, osteological signatures of different pathologies, and individual biomechanical performance. The REDCap database is also used to store fossil metadata like field notes and specimen preparation records. Our goal is to make these database tools available to other living colonies and natural history collections, so life-history data can be shared and standardized across institutions. This effort – in collaboration with the ZooMu network – will ultimately make life histories accessible to researchers – including paleontologists exploring the fossil record.more » « less
-
Abstract Diverse lines of geological and geochemical evidence indicate that the Eocene-Oligocene transition (EOT) marked the onset of a global cooling phase, rapid growth of the Antarctic ice sheet, and a worldwide drop in sea level. Paleontologists have established that shifts in mammalian community structure in Europe and Asia were broadly coincident with these events, but the potential impact of early Oligocene climate change on the mammalian communities of Afro-Arabia has long been unclear. Here we employ dated phylogenies of multiple endemic Afro-Arabian mammal clades (anomaluroid and hystricognath rodents, anthropoid and strepsirrhine primates, and carnivorous hyaenodonts) to investigate lineage diversification and loss since the early Eocene. These analyses provide evidence for widespread mammalian extinction in the early Oligocene of Afro-Arabia, with almost two-thirds of peak late Eocene diversity lost in these clades by ~30 Ma. Using homology-free dental topographic metrics, we further demonstrate that the loss of Afro-Arabian rodent and primate lineages was associated with a major reduction in molar occlusal topographic disparity, suggesting a correlated loss of dietary diversity. These results raise new questions about the relative importance of global versus local influences in shaping the evolutionary trajectories of Afro-Arabia’s endemic mammals during the Oligocene.more » « less
-
Abstract In 1967 G.G. Simpson described three partial mandibles from early Miocene deposits in Kenya that he interpreted as belonging to a new strepsirrhine primate,Propotto. This interpretation was quickly challenged, with the assertion thatPropottowas not a primate, but rather a pteropodid fruit bat. The latter interpretation has not been questioned for almost half a century. Here we re-evaluate the affinities ofPropotto, drawing upon diverse lines of evidence to establish that this strange mammal is a strepsirrhine primate as originally suggested by Simpson. Moreover, our phylogenetic analyses support the recognition ofPropotto, together with late EocenePlesiopithecusfrom Egypt, as African stem chiromyiform lemurs that are exclusively related to the extant aye-aye (Daubentonia) from Madagascar. Our results challenge the long-held view that all lemurs are descended from a single ancient colonization of Madagascar, and present an intriguing alternative scenario in which two lemur lineages dispersed from Africa to Madagascar independently, possibly during the later Cenozoic.more » « less
An official website of the United States government

Full Text Available