Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The challenge of adapting water resources systems to uncertain hydroclimatic and socioeconomic conditions warrants a dynamic planning approach. Recent studies have designed policies with structures linking infrastructure and management actions to threshold values of indicator variables observed over time. Typically, one or more of these components are held fixed while the others are optimized, constraining the flexibility of policy generation. Here we develop a framework to address this challenge by designing and testing dynamic adaptation policies that combine indicators, actions, and thresholds in a flexible structure. The approach is demonstrated for a case study of northern California, where a mix of infrastructure, management, and operational adaptations are considered over time in response to an ensemble of nonstationary hydrology and water demands. We first identify a subset of non‐dominated policies that are robust to held‐out scenarios, and then analyze their most common actions and indicators compared to non‐robust policies. Results show that the robust policies are not differentiated by the actions they select, but show substantial differences in their indicator variables, which can be interpreted in the context of physical hydrologic trends. In particular, the most frequent statistical transformations of indicator variables highlight the balance between adapting quickly versus correctly. Additionally, we determine the indicators most frequently associated with each action, as well as the distribution of action timing across scenarios. This study presents a new and transferable problem framing for adaptation under uncertainty in which indicator variables, actions, and policy structure are identified simultaneously during the optimization.more » « less
-
Abstract California’s Central Valley is one of the world’s most productive agricultural regions. Its high-value fruit, vegetable, and nut crops rely on surface water imports from a vast network of reservoirs and canals as well as groundwater, which has been substantially overdrafted to support irrigation. The region has undergone a shift to perennial (tree and vine) crops in recent decades, which has increased water demand amid a series of severe droughts and emerging regulations on groundwater pumping. This study quantifies the expansion of perennial crops in the Tulare Lake Basin, the southern region of the Central Valley with limited natural water availability. A gridded crop type dataset is compiled on a 1 mi2spatial resolution from a historical database of pesticide permits over the period 1974–2016 and validated against aggregated county-level data. This spatial dataset is then analyzed by irrigation district, the primary spatial scale at which surface water supplies are determined, to identify trends in planting decisions and agricultural water demand over time. Perennial crop acreage has nearly tripled over this period, and currently accounts for roughly 60% of planted area and 80% of annual revenue. These trends show little relationship with water availability and have been driven primarily by market demand. From this data, we focus on the increasing minimum irrigation needs each year to sustain perennial crops. Results indicate that under a range of plausible future regulations on groundwater pumping ranging from 10% to 50%, water supplies may fail to consistently meet demands, increasing losses by up to 30% of annual revenues. More broadly, the datasets developed in this work will support the development of dynamic models of the integrated water-agriculture system under uncertain climate and regulatory changes to understand the combined impacts of water supply shortages and intensifying irrigation demand.more » « less
An official website of the United States government
