Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Free, publicly-accessible full text available October 1, 2025
-
Free, publicly-accessible full text available April 1, 2025
-
Abstract Climate vulnerability assessments rely on water infrastructure system models that imperfectly predict performance metrics under ensembles of future scenarios. There is a benefit to reduced complexity system representations to support these assessments, especially when large ensembles are used to better characterize future uncertainties. An important question is whether the total uncertainty in the output metrics is primarily attributable to the climate ensemble or to the systems model itself. Here we develop a method to address this question by combining time series error models of performance metrics with time‐varying Sobol sensitivity analysis. The method is applied to a reduced complexity multi‐reservoir systems model of the Sacramento‐San Joaquin River Basin in California to demonstrate the decomposition of flood risk and water supply uncertainties under an ensemble of climate change scenarios. The results show that the contribution of systems model error to total uncertainty is small (∼5%–15%) relative to climate based uncertainties. This indicates that the reduced complexity systems model is sufficiently accurate for use in the context of the vulnerability assessment. We also observe that climate uncertainty is dominated by the choice of general circulation model and its interactive effects with the representative concentration pathway (RCP), rather than the RCP alone. This observation has implications for how climate vulnerabilities should be interpreted.
-
Abstract Short‐term precipitation forecasts are critical to regional water management, particularly in the Western U.S. where atmospheric rivers can be predicted reliably days in advance. However, spatial error in these forecasts may reduce their utility when the costs of false positives and negatives differ greatly. Here we investigate whether deep learning methods can leverage spatial patterns in precipitation forecasts to (a) improve the skill of predicting the occurrence of precipitation events at lead times from 1 to 14 days, and (b) balance the tradeoff between the rate of false negatives and false positives by modifying the discrimination threshold of the classifiers. This approach is demonstrated for the Sacramento River Basin, California, using the Global Ensemble Forecast System (GEFS) v2 precipitation fields as input to convolutional neural network (CNN) and multi‐layer perceptron models. Results show that the deep learning models do not significantly improve the overall skill (F1 score) relative to the ensemble mean GEFS forecast with bias‐corrected threshold. However, additional analysis of the CNN models suggests they often correct missed predictions from GEFS by compensating for spatial error at longer lead times. Additionally, the deep learning models provide the ability to adjust the rate of false positives and negatives based on the ratio of costs. Finally, analysis of the network activations (saliency) indicates spatial patterns consistent with physical understanding of atmospheric river events in this region, lending additional confidence in the ability of the method to support water management applications.