skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Herman, Ted"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Location and interaction data for workers in a hospital unit are useful for epidemiological research. This article describes a one-week study measuring contacts between healthcare professionals in a medical intensive care unit. Measurements capture the duration of contact, defined as being within six feet (1.8 ± 0.1 meters) distance between instrumented persons or between persons and selected locations throughout the unit. Within each patient room, measurements distinguish between three places: the sink, the computer, and the vitals monitor. Data from the study, approximately 15 million records, are processed into different formats that facilitate analysis. 
    more » « less
  2. Future cyber-physical systems will require higher capacity, meet more stringent real-time requirements, and adapt quickly to a broader range of network dynamics. However, the traditional approach of using fixed schedules to drive the operation of wireless networks has inherent limitations that make it unsuitable for these systems. As an alternative, we propose to replace schedules with domain-specific programs that coordinate the operation of the network. Our idea is that nodes in the network will run automatically generated programs that make informed decisions about flows at run time rather than using an a priori fixed schedule. We will sketch a domain-specific language that uses this additional flexibility to increase network capacity significantly. Furthermore, the constructed programs are also sufficiently simple to efficiently analyze key performance metrics such as flow response time and reliability. We conclude with future research directions. 
    more » « less
  3. Future Industrial Internet-of-Things (IIoT) systems will require wireless solutions to connect sensors, actuators, and controllers as part of high data rate feedback-control loops over real-time flows. A key challenge in such networks is to provide predictable performance and adaptability in response to link quality variations. We address this challenge by developing RECeiver ORiented Policies (Recorp), which leverages the stability of IIoT workloads by combining offline policy synthesis and run-time adaptation. Compared to schedules that service a single flow in a slot, Recorp policies share slots among multiple flows by assigning a coordinator and a list of flows that may be serviced in the same slot. At run-time, the coordinator will execute one of the flows depending on which flows the coordinator has already received. A salient feature of Recorp is that it provides predictable performance: a policy meets the end-to-end reliability and deadline of flows when the link quality exceeds a user-specified threshold. Experiments show that across IIoT workloads, policies provided a median increase of 50% to 142% in real-time capacity and a median decrease of 27% to 70% in worst-case latency when schedules and policies are configured to meet an end-to-end reliability of 99%. 
    more » « less
  4. null (Ed.)
    Emerging Industrial Internet-of-Things systems require wireless solutions to connect sensors, actuators, and controllers as part of high data rate feedback-control loops over real-time flows. A key challenge is to provide predictable performance and agility in response to fluctuations in link quality, variable workloads, and topology changes. We propose WARP to address this challenge. WARP uses programs to specify a network’s behavior and includes a synthesis procedure to automatically generate such programs from a high-level specification of the system’s workload and topology. WARP has three unique features: (1) WARP uses a domain-specific language to specify stateful programs that include conditional statements to control when a flow’s packets are transmitted. The execution paths of programs depend on the pattern of packet losses observed at runtime, thereby enabling WARP to readily adapt to packet losses due to short-term variations in link quality. (2) Our synthesis technique uses heuristics to improve network performance by considering multiple packet loss patterns and associated execution paths when determining the transmissions performed by nodes. Furthermore, the generated programs ensure that the likelihood of a flow delivering its packets by its deadline exceeds a user-specified threshold. (3) WARP can adapt to workload and topology changes without explicitly reconstructing a network’s program based on the observation that nodes can independently synthesize the same program when they share the same workload and topology information. Simulations show that WARP improves network throughput for data collection, dissemination, and mixed workloads on two realistic topologies. Testbed experiments show that WARP reduces the time to add new flows by 5 times over a state-of-the-art centralized control plane and guarantees the real-time and reliability of all flows. 
    more » « less
  5. The next generation of Industrial Internet-of-Things (IIoT) systems will require wireless solutions to connect sensors, actuators, and controllers as part of feedback-control loops over real-time flows. A key challenge in such networks is to provide predictable performance and adaptability to variations in link quality. We address this challenge by developing Receiver Oriented Policies (RECORP), which leverages the stability of IIoT workloads to build a solution that combines offline policy synthesis and run-time adaptation. Compared to schedules that service a single flow in a slot, RECORP policies share slots among multiple flows by assigning a coordinator and a set of candidate flows in the same slot. At run-time, the coordinator will dynamically execute one of the flows depending on what flows the coordinator has already received. The net effect of this strategy is that a node can dynamically repurpose the retransmissions remaining after receiving the data of an incoming flow to service other incoming flows opportunistically. Therefore, the flows that are executed in a slot can be adapted in response to the variable link conditions observed at run-time. Furthermore, RECORP also provides predictable performance: a policy meets the end-to-end reliability and deadline constraints of flows given probabilistic link qualities. When RECORP policies and schedules are configured to meet the same end-to-end reliability target of 99%, larger-scale multihop simulations show that across typical IIoT workloads, policies provided a median improvement of 1.63 to 2.44 times in real-time capacity as well as a median reduction of 1.45 to 2.43 times in worst-case latency. 
    more » « less