Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract We report the discovery of SDSS J022932.28+713002.7, a nascent extremely low-mass (ELM) white dwarf (WD) orbiting a massive (>1M⊙at 2σconfidence) companion with a period of 36 hr. We use a combination of spectroscopy, including data from the ongoing fifth-generation Sloan Digital Sky Survey (SDSS-V), and photometry to measure the stellar parameters of the primary pre-ELM WD. The lightcurve of the primary WD exhibits ellipsoidal variation, which we combine with radial velocity data andPHOEBEbinary simulations to estimate the mass of the invisible companion. We find that the primary WD has massM1= M⊙and the unseen secondary has massM2= M⊙. The mass of the companion suggests that it is most likely a near-Chandrasekhar-mass WD or a neutron star. It is likely that the system recently went through a Roche lobe overflow from the visible primary onto the invisible secondary. The dynamical configuration of the binary is consistent with the theoretical evolutionary tracks for such objects, and the primary is currently in its contraction phase. The measured orbital period puts this system on a stable evolutionary path which, within a few gigayears, will lead to a contracted ELM WD orbiting a massive compact companion.more » « lessFree, publicly-accessible full text available June 1, 2025
-
Abstract We report the discovery of two directly imaged, giant planet candidates orbiting the metal-rich, hydrogen atmosphere white dwarfs WD 1202−232 and WD 2105−82. JWST’s Mid-Infrared Instrument (MIRI) data on these two stars show a nearby resolved source at a projected separation of 11.47 and 34.62 au, respectively. Assuming the planets formed at the same time as their host stars, with total ages of 5.3 and 1.6 Gyr, the MIRI photometry is consistent with giant planets with masses ≈1–7MJup. The probability of both candidates being false positives due to red background sources is approximately 1 in 3000. If confirmed, these would be the first directly imaged planets that are similar in both age and separation to the giant planets in our own solar system, and they would demonstrate that widely separated giant planets like Jupiter survive stellar evolution. Giant planet perturbers are widely used to explain the tidal disruption of asteroids around metal-polluted white dwarfs. Confirmation of these two planet candidates with future MIRI imaging would provide evidence that directly links giant planets to metal pollution in white dwarf stars.more » « less
-
ABSTRACT Two recently discovered white dwarfs, WD J041246.84 + 754942.26 and WD J165335.21 − 100116.33, exhibit Hα and Hβ Balmer line emission similar to stars in the emerging DAHe class, yet intriguingly have not been found to have detectable magnetic fields. These white dwarfs are assigned the spectral type DAe. We present detailed follow-up of the two known DAe stars using new time-domain spectroscopic observations and analysis of the latest photometric time-series data from TESS and ZTF. We measure the upper magnetic field strength limit of both stars as B < 0.05 MG. The DAe white dwarfs exhibit photometric and spectroscopic variability, where in the case of WD J041246.84 + 754942.26 the strength of the Hα and Hβ emission cores varies in antiphase with its photometric variability over the spin period, which is the same phase relationship seen in DAHe stars. The DAe white dwarfs closely cluster in one region of the Gaia Hertzsprung–Russell diagram together with the DAHe stars. We discuss current theories on non-magnetic and magnetic mechanisms which could explain the characteristics observed in DAe white dwarfs, but additional data are required to unambiguously determine the origin of these stars.more » « less
-
ABSTRACT We report the discovery of two apparently isolated stellar remnants that exhibit rotationally modulated magnetic Balmer emission, adding to the emerging DAHe class of white dwarf stars. While the previously discovered members of this class show Zeeman-split triplet emission features corresponding to single magnetic field strengths, these two new objects exhibit significant fluctuations in their apparent magnetic field strengths with variability phase. The Zeeman-split hydrogen emission lines in LP 705−64 broaden from 9.4 to 22.2 MG over an apparent spin period of 72.629 min. Similarly, WD J143019.29−562358.33 varies from 5.8 to 8.9 MG over its apparent 86.394 min rotation period. This brings the DAHe class of white dwarfs to at least five objects, all with effective temperatures within 500 K of 8000 K and masses ranging from $$0.65\,\,{\text{to}}\,\,0.83\, {\rm M}_{\odot }$$.more » « less
-
Abstract The distribution of white dwarf rotation periods provides a means for constraining angular momentum evolution during the late stages of stellar evolution, as well as insight into the physics and remnants of double degenerate mergers. Although the rotational distribution of low-mass white dwarfs is relatively well constrained via asteroseismology, that of high-mass white dwarfs, which can arise from either intermediate-mass stellar evolution or white dwarf mergers, is not. Photometric variability in white dwarfs due to rotation of a spotted star is rapidly increasing the sample size of high-mass white dwarfs with measured rotation periods. We present the discovery of 22.4 minute photometric variability in the light curve of EGGR 156, a strongly magnetic, ultramassive white dwarf. We interpret this variability as rapid rotation, and our data suggest that EGGR 156 is the remnant of a double degenerate merger. Finally, we calculate the rate of period change in rapidly-rotating, massive, magnetic WDs due to magnetic dipole radiation. In many cases, including EGGR 156, the period change is not currently detectable over reasonable timescales, indicating that these WDs could be very precise clocks. For the most highly-magnetic, rapidly-rotating massive WDs, such as ZTF J1901+1450 and RE J0317−853, the period change should be detectable and may help constrain the structure and evolution of these exotic white dwarfs.more » « less
-
Context. The TESS space mission has recently demonstrated its great potential to discover new pulsating white dwarf and pre-white dwarf stars, and to detect periodicities with high precision in already known white-dwarf pulsators. Aims. We report the discovery of two new pulsating He-rich atmosphere white dwarfs (DBVs) and present a detailed asteroseismological analysis of three already known DBV stars employing observations collected by the TESS mission along with ground-based data. Methods. We processed and analyzed TESS observations of the three already known DBV stars PG 1351+489 (TIC 471015205), EC 20058−5234 (TIC 101622737), and EC 04207−4748 (TIC 153708460), and the two new DBV pulsators WDJ152738.4−50207.4 (TIC 150808542) and WD 1708−871 (TIC 451533898), whose variability is reported for the first time in this paper. We also carried out a detailed asteroseismological analysis using fully evolutionary DB white-dwarf models built considering the complete evolution of the progenitor stars. We constrained the stellar mass of three of these target stars by means of the observed period spacing, and derived a representative asteroseismological model using the individual periods, when possible. Results. We extracted frequencies from the TESS light curves of these DBV stars using a standard pre-whitening procedure to derive the potential pulsation frequencies. All the oscillation frequencies that we found are associated with g -mode pulsations with periods spanning from ∼190 s to ∼936 s. We find hints of rotation from frequency triplets in some of the targets, including the two new DBVs. For three targets, we find constant period spacings, which allowed us to infer their stellar masses and constrain the harmonic degree ℓ of the modes. We also performed period-to-period fit analyses and found an asteroseismological model for three targets, with stellar masses generally compatible with the spectroscopic masses. Obtaining seismological models allowed us to estimate the seismological distances and compare them with the precise astrometric distances measured with Gaia . We find a good agreement between the seismic and the astrometric distances for three stars (PG 1351+489, EC 20058-5234, and WD 1708-871); although, for the other two stars (EC 04207-4748 and WD J152738.4-50207), the discrepancies are substantial. Conclusions. The high-quality data from the TESS mission continue to provide important clues which can be used to help determine the internal structure of pulsating pre-white dwarf and white dwarf stars through the tools of asteroseismology.more » « less
-
ABSTRACT We present the photometric data from TESS for two known ZZ Ceti stars, PG 1541 + 651 and BPM 31594. Before TESS, both objects only had observations from short runs from ground-based facilities, with three and one period detected, respectively. The TESS data allowed the detection of multiple periodicities, 12 for PG 1541 + 651, and six for BPM 31594, which enables us to perform a detailed asteroseismological study. For both objects, we found a representative asteroseismic model with canonical stellar mass ∼0.61M⊙ and thick hydrogen envelopes, thicker than 10−5.3M*. The detection of triplets in the Fourier transform also allowed us to estimate mean rotation periods, being ∼22 h for PG 1541 + 651 and 11.6 h for BPM 31594, which is consistent with a range of values reported for other ZZ Ceti stars.more » « less
-
Abstract White dwarf (WD) stars evolve simply and predictably, making them reliable age indicators. However, self-consistent validation of the methods for determining WD total ages has yet to be widely performed. This work uses 1565 wide (>100 au) WD+WD binaries and 24 new triples containing at least two WDs to test the accuracy and validity of WD total age determinations. For these 1589 wide double WD binaries and triples, we derive the total age of each WD using photometric data from all-sky surveys, in conjunction with Gaia parallaxes and current hydrogen atmosphere WD models. Ignoring the initial-to-final mass relation and considering only WD cooling ages, we find that roughly 21%–36% of the more massive WDs in a system have a shorter cooling age. Since more massive WDs should be born as more massive main-sequence stars, we interpret this unphysical disagreement as evidence of prior mergers or the presence of an unresolved companion, suggesting that roughly 21%–36% of wide WD+WD binaries were once triples. Among the 423 wide WD+WD pairs that pass high-fidelity cuts, we find that 25% total age uncertainties are generally appropriate for WDs with masses >0.63M⊙and temperatures <12,000 K and provide suggested inflation factors for age uncertainties for higher-mass WDs. Overall, WDs return reliable stellar ages, but we detail cases where the total ages are least reliable, especially for WDs <0.63M⊙.more » « less
-
Abstract Hot subdwarf stars are mostly stripped red giants that can exhibit photometric variations due to stellar pulsations, eclipses, the reflection effect, ellipsoidal modulation, and Doppler beaming. Detailed studies of their light curves help constrain stellar parameters through asteroseismological analyses or binary light-curve modeling and generally improve our capacity to draw a statistically meaningful picture of this enigmatic stage of stellar evolution. From an analysis of Gaia DR2 flux errors, we have identified around 1200 candidate hot subdwarfs with inflated flux errors for their magnitudes—a strong indicator of photometric variability. As a pilot study, we obtained 2 minute cadence TESS Cycle 2 observations of 187 candidate hot subdwarfs with anomalous Gaia flux errors. More than 90% of our targets show significant photometric variations in their TESS light curves. Many of the new systems found are cataclysmic variables, but we report the discovery of several new variable hot subdwarfs, including HW Vir binaries, reflection-effect systems, pulsating sdBV s stars, and ellipsoidally modulated systems. We determine atmospheric parameters for select systems using follow-up spectroscopy from the 3 m Shane telescope. Finally, we present a Fourier diagnostic plot for classifying binary light curves using the relative amplitudes and phases of their fundamental and harmonic signals in their periodograms. This plot makes it possible to identify certain types of variables efficiently, without directly investigating their light curves, and may assist in the rapid classification of systems observed in large photometric surveys.more » « less
-
Abstract We report the discovery of pulsations in the extremely low-mass (ELM), likely helium-core white dwarf GD 278 via ground- and space-based photometry. GD 278 was observed by the Transiting Exoplanet Survey Satellite (TESS) in Sector 18 at a 2 minute cadence for roughly 24 days. The TESS data reveal at least 19 significant periodicities between 2447 and 6729 s, one of which is the longest pulsation period ever detected in a white dwarf. Previous spectroscopy found that this white dwarf is in a 4.61 hr orbit with an unseen >0.4 M ⊙ companion and has T eff = 9230 ± 100 K and log g = 6.627 ± 0.056 , which corresponds to a mass of 0.191 ± 0.013 M ⊙ . Patterns in the TESS pulsation frequencies from rotational splittings appear to reveal a stellar rotation period of roughly 10 hr, making GD 278 the first ELM white dwarf with a measured rotation rate. The patterns inform our mode identification for asteroseismic fits, which, unfortunately, do not reveal a global best-fit solution. Asteroseismology reveals two main solutions roughly consistent with the spectroscopic parameters of this ELM white dwarf, but with vastly different hydrogen-layer masses; future seismic fits could be further improved by using the stellar parallax. GD 278 is now the tenth known pulsating ELM white dwarf; it is only the fifth known to be in a short-period binary, but is the first with extended, space-based photometry.more » « less