skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hernandez, Santiago"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The aero-structural design of bridges is mainly controlled by the deck cross-section design. Design modifications on bridge decks impact the deck aerodynamics and the deck mechanical contribution, which also affect the bridge aeroelastic responses. The nonlinear inherent nature of bluff body aerodynamics combined with the nonlinearities of multimodal aeroelastic analyses result in complex relationships between the full bridge aeroelastic responses and deck shape design variables. This fact impacts the design process as it may lead to the development of complex feasible design regions in the chosen design domain, including disjoint feasible regions that may cause local minima. Given the limitations of metaheuristic optimization methods to deal with optimization problems with large sets of design variables, as required in holistic bridge design problems, gradient-based optimization algorithms can be recast to address global optimization problems. In this study, we propose the use of tunneling optimization methods to address this challenge. 
    more » « less