skip to main content

Search for: All records

Creators/Authors contains: "Hersam, Mark C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available May 24, 2023
  2. α-RuCl3 is a layered transition metal halide that possesses a range of exotic magnetic, optical, and electronic properties including fractional excitations indicative of a proximate Kitaev quantum spin liquid (QSL). While previous reports have explored these properties on idealized single crystals or mechanically exfoliated samples, the scalable production of α-RuCl3 nanosheets has not yet been demonstrated. Here, we perform liquid-phase exfoliation (LPE) of α-RuCl3 through an electrochemically assisted approach, which yields ultrathin, electron-doped α-RuCl3 nanosheets that are then assembled into electrically conductive large-area thin films. The crystalline integrity of the α-RuCl3 nanosheets following LPE is confirmed through a wide rangemore »of structural and chemical analyses. Moreover, the physical properties of the LPE α-RuCl3 nanosheets are investigated through electrical, optical, and magnetic characterization methods, which reveal a structural phase transition at 230 K that is consistent with the onset of Kitaev paramagnetism in addition to an antiferromagnetic transition at 2.6 K. Intercalated ions from the electrochemical LPE protocol favorably alter the optical response of the α-RuCl3 nanosheets, enabling large-area Mott insulator photodetectors that operate at telecommunications-relevant infrared wavelengths near 1.55 μm. These photodetectors show a linear photocurrent response as a function of incident power, which suggests negligible trap-mediated recombination or photothermal effects, ultimately resulting in a photoresponsivity of ≈2 mA/W.« less
    Free, publicly-accessible full text available June 17, 2023
  3. Free, publicly-accessible full text available September 29, 2022
  4. Abstract There is accelerating interest in developing memory devices using antiferromagnetic (AFM) materials, motivated by the possibility for electrically controlling AFM order via spin-orbit torques, and its read-out via magnetoresistive effects. Recent studies have shown, however, that high current densities create non-magnetic contributions to resistive switching signals in AFM/heavy metal (AFM/HM) bilayers, complicating their interpretation. Here we introduce an experimental protocol to unambiguously distinguish current-induced magnetic and nonmagnetic switching signals in AFM/HM structures, and demonstrate it in IrMn 3 /Pt devices. A six-terminal double-cross device is constructed, with an IrMn 3 pillar placed on one cross. The differential voltage ismore »measured between the two crosses with and without IrMn 3 after each switching attempt. For a wide range of current densities, reversible switching is observed only when write currents pass through the cross with the IrMn 3 pillar, eliminating any possibility of non-magnetic switching artifacts. Micromagnetic simulations support our findings, indicating a complex domain-mediated switching process.« less
    Free, publicly-accessible full text available December 1, 2022
  5. Free, publicly-accessible full text available October 20, 2022
  6. Abstract

    Selective breaking of degenerate energy levels is a well-known tool for coherent manipulation of spin states. Though most simply achieved with magnetic fields, polarization-sensitive optical methods provide high-speed alternatives. Exploiting the optical selection rules of transition metal dichalcogenide monolayers, the optical Stark effect allows for ultrafast manipulation of valley-coherent excitons. Compared to excitons in these materials, microcavity exciton-polaritons offer a promising alternative for valley manipulation, with longer lifetimes, enhanced valley coherence, and operation across wider temperature ranges. Here, we show valley-selective control of polariton energies in WS2using the optical Stark effect, extending coherent valley manipulation to the hybrid light-mattermore »regime. Ultrafast pump-probe measurements reveal polariton spectra with strong polarization contrast originating from valley-selective energy shifts. This demonstration of valley degeneracy breaking at picosecond timescales establishes a method for coherent control of valley phenomena in exciton-polaritons.

    « less