skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Thursday, February 13 until 2:00 AM ET on Friday, February 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hersam, Mark C."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Carboxylic acid functionalized cellulose nanocrystals have been obtained from biomass and evaluated as aqueous, environmentally sustainable alternatives to conventional polyvinylidene difluoride binders for cathodes of lithium-ion batteries.

     
    more » « less
    Free, publicly-accessible full text available December 9, 2025
  2. Cross-flow filtration using porous ceramic membranes enables high-throughput and energy-efficient production of printable graphene inks for high-performance flexible electronic applications.

     
    more » « less
    Free, publicly-accessible full text available November 25, 2025
  3. Free, publicly-accessible full text available October 23, 2025
  4. Abstract

    Graphite is a commonly used raw material across many industries and the demand for high‐quality graphite has been increasing in recent years, especially as a primary component for lithium‐ion batteries. However, graphite production is currently limited by production shortages, uneven geographical distribution, and significant environmental impacts incurred from conventional processing. Here, an efficient method of synthesizing biomass‐derived graphite from biochar is presented as a sustainable alternative to natural and synthetic graphite. The resulting bio‐graphite equals or exceeds quantitative quality metrics of spheroidized natural graphite, achieving a RamanID/IGratio of 0.051 and crystallite size parallel to the graphene layers (La) of 2.08 µm. This bio‐graphite is directly applied as a raw input to liquid‐phase exfoliation of graphene for the scalable production of conductive inks. The spin‐coated films from the bio‐graphene ink exhibit the highest conductivity among all biomass‐derived graphene or carbon materials, reaching 3.58 ± 0.16 × 104S m−1. Life cycle assessment demonstrates that this bio‐graphite requires less fossil fuel and produces reduced greenhouse gas emissions compared to incumbent methods for natural, synthesized, and other bio‐derived graphitic materials. This work thus offers a sustainable, locally adaptable solution for producing state‐of‐the‐art graphite that is suitable for bio‐graphene and other high‐value products.

     
    more » « less
    Free, publicly-accessible full text available October 22, 2025
  5. Neuromorphic hardware promises to revolutionize information technology with brain-inspired parallel processing, in-memory computing, and energy-efficient implementation of artificial intelligence and machine learning. In particular, two-dimensional (2D) memtransistors enable gate-tunable non-volatile memory, bio-realistic synaptic phenomena, and atomically thin scaling. However, previously reported 2D memtransistors have not achieved low operating voltages without compromising gate-tunability. Here, we overcome this limitation by demonstrating MoS2 memtransistors with short channel lengths < 400 nm, low operating voltages < 1 V, and high field-effect switching ratios > 10,000 while concurrently achieving strong memristive responses. This functionality is realized by fabricating back-gated memtransistors using highly polycrystalline monolayer MoS2 channels on high-κ Al2O3 dielectric layers. Finite-element simulations confirm enhanced electrostatic modulation near the channel contacts, which reduces operating voltages without compromising memristive or field-effect switching. Overall, this work demonstrates a pathway for reducing the size and power consumption of 2D memtransistors as is required for ultrahigh-density integration. 
    more » « less
    Free, publicly-accessible full text available May 28, 2025
  6. Free, publicly-accessible full text available July 10, 2025
  7. Abstract

    Liquid phase exfoliation (LPE) of graphene is a potentially scalable method to produce conductive graphene inks for printed electronic applications. Among LPE methods, wet jet milling (WJM) is an emerging approach that uses high‐speed, turbulent flow to exfoliate graphene nanoplatelets from graphite in a continuous flow manner. Unlike prior WJM work based on toxic, high‐boiling‐point solvents such as n‐methyl‐2‐pyrollidone (NMP), this study uses the environmentally friendly solvent ethanol and the polymer stabilizer ethyl cellulose (EC). Bayesian optimization and iterative batch sampling are employed to guide the exploration of the experimental phase space (namely, concentrations of graphite and EC in ethanol) in order to identify the Pareto frontier that simultaneously optimizes three performance criteria (graphene yield, conversion rate, and film conductivity). This data‐driven strategy identifies vastly different optimal WJM conditions compared to literature precedent, including an optimal loading of 15 wt% graphite in ethanol compared to 1 wt% graphite in NMP. These WJM conditions provide superlative graphene production rates of 3.2 g hr−1with the resulting graphene nanoplatelets being suitable for screen‐printed micro‐supercapacitors. Finally, life cycle assessment reveals that ethanol‐based WJM graphene exfoliation presents distinct environmental sustainability advantages for greenhouse gas emissions, fossil fuel consumption, and toxicity.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2025
  8. Unlike the well-studied and technologically advanced Group III-V and Group II-VI compound semiconductor alloys, alloys of ternary metal oxide semiconductors have only recently begun to receive widespread attention. Here, we describe the effect of alkaline earth metal substitution on the optical, electronic, and photoelectrochemical (PEC) properties of copper metavanadate (CuV2O6). As a host, the Cu-V-O compound family presents a versatile framework to develop such composition-property correlations. Alloy compositions of A0.1Cu0.9V2O6(A = Mg, Ca) photoanodes were synthesized via a time and energy-efficient solution combustion synthesis (SCS) method. The effect of introducing alkaline earth metals (Mg, Ca) on the crystal structure, microstructure, electronic, and optical properties of copper metavanadates was investigated by powder X-ray diffraction (PXRD), scanning electron microscopy (SEM), diffuse reflectance spectroscopy (DRS), transmission electron microscopy (TEM), and Raman spectroscopy. The PXRD, TEM, and Raman spectroscopy data demonstrated the polycrystalline powder samples to be mutually soluble, solid solutions of copper and alkaline earth metal metavanadates and not simple mixtures of these compounds. The DRS data showed a systematic decrease in the optical bandgap with Cu incorporation. These trends were corroborated by electronic band structure calculations. Finally, the PEC properties exhibited a strong dependence on the alloy composition, pointing to possible applicability in solar water splitting, heterogeneous photocatalysis, phosphor lighting/displays, and photovoltaic devices.

     
    more » « less
    Free, publicly-accessible full text available July 1, 2025
  9. Van der Waals materials with long-range magnetic order show a range of correlated phenomena that could be of use in the development of optoelectronic and spintronic applications. Magnetically ordered van der Waals semiconductors with spin-polarized currents are, in particular, sensitive to external stimuli such as strain, electrostatic fields, magnetic fields and electromagnetic radiation. Their combination of two-dimensional magnetic order, semiconducting band structure and weak dielectric screening means that these materials could be used to create novel atomically thin opto-spintronic devices. Here we explore the development of van der Waals opto-spintronics. We examine the interplay between optical, magnetic and electronic excitations in van der Waals magnetic semiconductors, and explore the control of their magnetization via external stimuli. We consider fabrication and passivation strategies for the practical handling and design of opto-spintronic devices. We also explore potential opto-spintronic device architectures and applications, which include magnonics, quantum transduction, neuromorphic computing and non-volatile memory. 
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  10. Organic solar cells (OSCs) using non-fullerene acceptors (NFAs) afford exceptional photovoltaic performance metrics, however, their stability remains a significant challenge. Existing OSC stability studies focus on understanding degradation rate-performance relationships, improving interfacial layers, and suppressing degradative chemical reaction pathways. Nevertheless, there is a knowledge gap concerning how such degradation affects crystal structure, electronic states, and recombination dynamics that ultimately impact NFA performance. Here we seek a quantitative relationship between OSC metrics and blend morphology, trap density of states, charge carrier mobility, and recombination processes during the UV-light-induced degradation of PBDB-TF:Y6 inverted solar cells as the PCE (power conversion efficiency) falls from 17.3 to 5.0%. Temperature-dependent electrical and impedance measurements reveal deep traps at 0.48 eV below the conduction band that are unaffected by Y6 degradation, and shallow traps at 0.15 eV below the conduction band that undergo a three-fold density of states increase at the PCE degradation onset. Computational analysis correlates vinyl oxidation with a new trap state at 0.25 eV below the conduction band, likely involving charge transfer from the UV-absorbing ZnO electron transport layer. In-situ integrated photocurrent analysis and transient absorption spectroscopy reveal that these traps lower electron mobility and increase recombination rates during degradation. Grazing-incidence wide-angle x-ray scattering and computational analysis reveal that the degraded Y6 crystallite morphology is largely preserved but that <1% of degraded Y6 molecules cause OSC PCE performance degradation by ≈50%. Together the detailed electrical, impedance, morphological, ultrafast spectroscopic, matrix-assisted laser desorption/ionization time-of-flight (MALDI-ToF) spectroscopy, and computational data reveal that the trap state energies and densities accompanying Y6 vinyl oxidation are primarily responsible for the PCE degradation in these operating NFA-OSCs. 
    more » « less
    Free, publicly-accessible full text available August 13, 2025