skip to main content

Search for: All records

Creators/Authors contains: "Hesketh, G."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available November 1, 2022
  2. A correction to this paper has been published: 10.1140/epjc/s10052-021-09344-w
  3. Abstract This paper presents a search for dark matter in the context of a two-Higgs-doublet model together with an additional pseudoscalar mediator, a , which decays into the dark-matter particles. Processes where the pseudoscalar mediator is produced in association with a single top quark in the 2HDM+ a model are explored for the first time at the LHC. Several final states which include either one or two charged leptons (electrons or muons) and a significant amount of missing transverse momentum are considered. The analysis is based on proton–proton collision data collected with the ATLAS experiment at $$\sqrt{s} = 13$$ s = 13  TeV during LHC Run 2 (2015–2018), corresponding to an integrated luminosity of 139  $$\hbox {fb}^{-1}$$ fb - 1 . No significant excess above the Standard Model predictions is found. The results are expressed as 95% confidence-level limits on the parameters of the signal models considered.
  4. Abstract Jet energy scale and resolution measurements with their associated uncertainties are reported for jets using 36–81 fb $$^{-1}$$ - 1 of proton–proton collision data with a centre-of-mass energy of $$\sqrt{s}=13$$ s = 13   $${\text {Te}}{\text {V}}$$ TeV collected by the ATLAS detector at the LHC. Jets are reconstructed using two different input types: topo-clusters formed from energy deposits in calorimeter cells, as well as an algorithmic combination of charged-particle tracks with those topo-clusters, referred to as the ATLAS particle-flow reconstruction method. The anti- $$k_t$$ k t jet algorithm with radius parameter $$R=0.4$$ R = 0.4 is the primary jet definition used for both jet types. This result presents new jet energy scale and resolution measurements in the high pile-up conditions of late LHC Run 2 as well as a full calibration of particle-flow jets in ATLAS. Jets are initially calibrated using a sequence of simulation-based corrections. Next, several in situ techniques are employed to correct for differences between data and simulation and to measure the resolution of jets. The systematic uncertainties in the jet energy scale for central jets ( $$|\eta |<1.2$$ | η | < 1.2 ) vary from 1% for a wide range of high- $$p_{{\text {T}}}$$ p Tmore »jets ( $$2502.5~{\text {Te}}{\text {V}}$$ > 2.5 TeV ). The relative jet energy resolution is measured and ranges from ( $$24 \pm 1.5$$ 24 ± 1.5 )% at 20  $${\text {Ge}}{\text {V}}$$ GeV to ( $$6 \pm 0.5$$ 6 ± 0.5 )% at 300  $${\text {Ge}}{\text {V}}$$ GeV .« less
  5. Abstract The production cross-section of a top quark in association with a W boson is measured using proton–proton collisions at $$\sqrt{s} = 8\,\text {TeV}$$ s = 8 TeV . The dataset corresponds to an integrated luminosity of $$20.2\,\text {fb}^{-1}$$ 20.2 fb - 1 , and was collected in 2012 by the ATLAS detector at the Large Hadron Collider at CERN. The analysis is performed in the single-lepton channel. Events are selected by requiring one isolated lepton (electron or muon) and at least three jets. A neural network is trained to separate the tW signal from the dominant $$t{\bar{t}}$$ t t ¯ background. The cross-section is extracted from a binned profile maximum-likelihood fit to a two-dimensional discriminant built from the neural-network output and the invariant mass of the hadronically decaying W boson. The measured cross-section is $$\sigma _{tW} = 26 \pm 7\,\text {pb}$$ σ tW = 26 ± 7 pb , in good agreement with the Standard Model expectation.