Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Many populations experience high seasonal temperatures. Pregnant women are considered vulnerable to extreme heat because ambient heat exposure has been linked to pregnancy complications including preterm birth and low birthweight. The physiological mechanisms that underpin these associations are poorly understood. We reviewed the existing research evidence to clarify the mechanisms that lead to adverse pregnancy outcomes in order to inform public health actions. A multi-disciplinary expert group met to review the existing evidence base and formulate a consensus regarding the physiological mechanisms that mediate the effect of high ambient temperature on pregnancy. A literature search was conducted in advance of the meeting to identify existing hypotheses and develop a series of questions and themes for discussion. Numerous hypotheses have been generated based on animal models and limited observational studies. There is growing evidence that pregnant women are able to appropriately thermoregulate; however, when exposed to extreme heat, there are a number of processes that may occur which could harm the mother or fetus including a reduction in placental blood flow, dehydration, and an inflammatory response that may trigger preterm birth. There is a lack of substantial evidence regarding the processes that cause heat exposure to harm pregnant women. Research is urgently needed to identify what causes the adverse outcomes in pregnancy related to high ambient temperatures so that the impact of climate change on pregnant women can be mitigated.more » « less
-
Abstract Objective To assess whether exposure to high temperatures in pregnancy is associated with increased risk for preterm birth, low birth weight, and stillbirth. Design Systematic review and random effects meta-analysis. Data sources Medline and Web of Science searched up to September 2018, updated in August 2019. Eligibility criteria for selecting studies Clinical studies on associations between high environmental temperatures, and preterm birth, birth weight, and stillbirths. Results 14 880 records and 175 full text articles were screened. 70 studies were included, set in 27 countries, seven of which were countries with low or middle income. In 40 of 47 studies, preterm births were more common at higher than lower temperatures. Exposures were classified as heatwaves, 1°C increments, and temperature threshold cutoff points. In random effects meta-analysis, odds of a preterm birth rose 1.05-fold (95% confidence interval 1.03 to 1.07) per 1°C increase in temperature and 1.16-fold (1.10 to 1.23) during heatwaves. Higher temperature was associated with reduced birth weight in 18 of 28 studies, with considerable statistical heterogeneity. Eight studies on stillbirths all showed associations between temperature and stillbirth, with stillbirths increasing 1.05-fold (1.01 to 1.08) per 1°C rise in temperature. Associations between temperature and outcomes were largest among women in lower socioeconomic groups and at age extremes. The multiple temperature metrics and lag analyses limited comparison between studies and settings. Conclusions Although summary effect sizes are relatively small, heat exposures are common and the outcomes are important determinants of population health. Linkages between socioeconomic status and study outcomes suggest that risks might be largest in low and middle income countries. Temperature rises with global warming could have major implications for child health. Systematic review registration PROSPERO CRD 42019140136 and CRD 42018118113.more » « less
An official website of the United States government
