skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hewage, Chamin_Nalinda Lokugam"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. State-of-the-art, scalable, indexing techniques in location-based image data retrieval are primarily focused on supporting window and range queries. However, support of these indexes is not well explored when there are multiple spatially similar images to retrieve for a given geographic location. Adoption of existing spatial indexes such as the kD-tree pose major scalability impediments. In response, this work proposes a novel scalable, key-value, database oriented, secondary-memory based, spatial index to retrieve the top k most spatially similar images to a given geographic location. The proposed index introduces a 4-dimensional Hilbert index (4DHI). This space filling curve is implemented atop HBase (a key-value database). Experiments performed on both synthetically generated and real world data demonstrate comparable accuracy with MD-HBase (a state of the art, scalable, multidimensional point data management system) and better performance. Specifically, 4DHI yielded 34% - 39% storage improvements compared to the disk consumption of the original index of MD-HBase. The compactness in 4DHI also yielded up to 3.4 and 4.7 fold gains when retrieving 6400 and 12800 neighbours, respectively; compared to the adoption of original index of MD-HBase for respective neighbour searches. An optimization technique termed “Bounding Box Displacement” (BBD) is introduced to improve the accuracy of the top k approximations in relation to the results of in-memory kD-tree. Finally, a method of reducing row key length is also discussed for the proposed 4DHI to further improve the storage efficiency and scalability in managing large numbers of remotely sensed images. 
    more » « less