Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
ABSTRACT We present new observations of 16 bright (r = 19–21) gravitationally lensed galaxies at z ≃ 1–3 selected from the CASSOWARY survey. Included in our sample is the z = 1.42 galaxy CSWA-141, one of the brightest known reionization-era analogues at high redshift (g = 20.5), with a large specific star formation rate (31.2 Gyr−1) and an [O iii]+H β equivalent width (EW[O iii] + H β = 730 Å) that is nearly identical to the average value expected at z ≃ 7–8. In this paper, we investigate the rest-frame UV nebular line emission in our sample with the goal of understanding the factors that regulate strong C iii] emission. Although most of the sources in our sample show weak UV line emission, we find elevated C iii] in the spectrum of CSWA-141 (EWC iii] = 4.6 ± 1.9 Å) together with detections of other prominent emission lines (O iii], Si iii], Fe ii⋆, Mg ii). We compare the rest-optical line properties of high-redshift galaxies with strong and weak C iii] emission, and find that systems with the strongest UV line emission tend to have young stellar populations and nebular gas that is moderately metal-poor and highly ionized, consistent with trends seen at low and high redshift. The brightness of CSWA-141 enables detailed investigation of the extreme emission line galaxies which become common at z > 6. We find that gas traced by the C iii] doublet likely probes higher densities than that traced by [O ii] and [S ii]. Characterization of the spectrally resolved Mg ii emission line and several low-ionization absorption lines suggests neutral gas around the young stars is likely optically thin, potentially facilitating the escape of ionizing radiation.more » « less
-
Abstract The SPT 0311–58 system atz= 6.900 is an extremely massive structure within the reionization epoch and offers a chance to understand the formation of galaxies at an extreme peak in the primordial density field. We present 70 mas Atacama Large Millimeter/submillimeter Array observations of the dust continuum and [Cii] 158μm emission in the central pair of galaxies and reach physical resolutions of ∼100–350 pc, among the most detailed views of any reionization-era system to date. The observations resolve the source into at least a dozen kiloparsec-size clumps. The global kinematics and high turbulent velocity dispersion within the galaxies present a striking contrast to recent claims of dynamically cold thin-disk kinematics in some dusty galaxies just 800 Myr later atz∼ 4. We speculate that both gravitational interactions and fragmentation from massive parent disks have likely played a role in the overall dynamics and formation of clumps in the system. Each clump individually is comparable in mass to other 6 <z< 8 galaxies identified in rest-UV/optical deep field surveys, but with star formation rates elevated by a factor of ~3-5. Internally, the clumps themselves bear close resemblance to greatly scaled-up versions of virialized cloud-scale structures identified in low-redshift galaxies. Our observations are qualitatively similar to the chaotic and clumpy assembly within massive halos seen in simulations of high-redshift galaxies.more » « less