skip to main content

Search for: All records

Creators/Authors contains: "Hickey, Laura J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
    Abstract. The fortedata R package is an open data notebook from the Forest Resilience ThresholdExperiment (FoRTE) – a modeling and manipulative field experiment that teststhe effects of disturbance severity and disturbance type on carbon cyclingdynamics in a temperate forest. Package data consist of measurements ofcarbon pools and fluxes and ancillary measurements to help analyze andinterpret carbon cycling over time. Currently the package includes data andmetadata from the first three FoRTE field seasons, serves as a central,updatable resource for the FoRTE project team, and is intended as a resourcefor external users over the course of the experiment and in perpetuity.Further, it supports all associated FoRTE publications, analyses, andmodeling efforts. This increases efficiency, consistency, compatibility, and productivity while minimizing duplicated effort and error propagation thatcan arise as a function of a large, distributed and collaborative effort.More broadly, fortedata represents an innovative, collaborative way of approachingscience that unites and expedites the delivery of complementary datasets tothe broader scientific community, increasing transparency andreproducibility of taxpayer-funded science. The fortedata package is available via GitHub: (last access: 19 February 2021), and detaileddocumentation on the access, used, and applications of fortedata are available at (last access: 19 February 2021). The first publicrelease, version 1.0.1 is also archived at (Atkins et al., 2020b). All data products are also available outside of thepackage as .csv files: (Atkins et al., 2020c). 
    more » « less
  2. Globally, planted forests are rapidly replacing naturally regenerated stands but the implications for canopy structure, carbon (C) storage, and the linkages between the two are unclear. We investigated the successional dynamics, interlinkages and mechanistic relationships between wood net primary production (NPPw) and canopy structure in planted and naturally regenerated red pine (Pinus resinosa Sol. ex Aiton) stands spanning ≥ 45 years of development. We focused our canopy structural analysis on leaf area index (LAI) and a spatially integrative, terrestrial LiDAR-based complexity measure, canopy rugosity, which is positively correlated with NPPw in several naturally regenerated forests, but which has not been investigated in planted stands. We estimated stand NPPw using a dendrochronological approach and examined whether canopy rugosity relates to light absorption and light–use efficiency. We found that canopy rugosity increased similarly with age in planted and naturally regenerated stands, despite differences in other structural features including LAI and stem density. However, the relationship between canopy rugosity and NPPw was negative in planted and not significant in naturally regenerated stands, indicating structural complexity is not a globally positive driver of NPPw. Underlying the negative NPPw-canopy rugosity relationship in planted stands was a corresponding decline in light-use efficiency, which peaked in the youngest, densely stocked stand with high LAI and low structural complexity. Even with significant differences in the developmental trajectories of canopy structure, NPPw, and light use, planted and naturally regenerated stands stored similar amounts of C in wood over a 45-year period. We conclude that widespread increases in planted forests are likely to affect age-related patterns in canopy structure and NPPw, but planted and naturally regenerated forests may function as comparable long-term C sinks via different structural and mechanistic pathways. 
    more » « less