skip to main content


Search for: All records

Creators/Authors contains: "Higaki, Tatsuya"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The metallic bond is arguably the most intriguing one among the three types of chemical bonds, and the resultant plasmon excitation ( e.g. in gold nanoparticles) has garnered wide interest. Recent progress in nanochemistry has led to success in obtaining atomically precise nanoclusters (NCs) of hundreds of atoms per core. In this work, thiolate-protected Au 279 (SR) 84 and Au 333 (SR) 79 NCs, both in the nascent metallic state are investigated by cryogenic optical spectroscopy down to 2.5 K. At room temperature, both NCs exhibit distinct plasmon resonances, albeit the NCs possess a gap (estimated 0.02–0.03 eV, comparable to thermal energy). Interestingly, we observe no effect on plasmons with the transition from the metallic state at r.t. to the insulating state at cryogenic temperatures (down to 2.5 K), indicating a nonthermal origin for electron-gas formation. The electronic screening-induced birth of metallic state/bonding is discussed. The obtained insights offer deeper understanding of the nascent metallic state and covalent-to-metallic bonding evolution, as well as plasmon birth from concerted excitonic transitions. 
    more » « less
  2. Atomically precise nanoclusters of coinage metals in the 1–3 nm size regime have been intensively pursued in recent years. Such nanoclusters are attractive as they fill the gap between small molecules (<1 nm) and regular nanoparticles (>3 nm). This intermediate identity endows nanoclusters with unique physicochemical properties and provides nanochemists opportunities to understand the fundamental science of nanomaterials. Metal nanoparticles are well known to exhibit plasmon resonances upon interaction with light; however, when the particle size is downscaled to the nanocluster regime, the plasmons fade out and step-like absorption spectra characteristic of cluster sizes are manifested due to strong quantum confinement effects. Recent research has revealed that nanoclusters are commonly composed of a distinctive kernel and a surface-protecting shell (or staple-like metal–ligand motifs). Understanding the kernel configuration and evolution is one of the central topics in nanoscience research. This Review summarizes the recent progress in identifying the growth patterns of atomically precise coinage nanoclusters. Several basic kernel units have been observed, such as the M 4 , M 13 and M 14 polyhedrons (where, M = metal atom). Among them, the tetrahedral M 4 and icosahedral M 13 units are the most common ones, which are adopted as building blocks to construct larger kernel structures via various fusion or aggregation modes, including the vertex- and face-sharing mode, the double-strand and alternate single-strand growth, and cyclic fusion of units, as well as the fcc-based cubic growth pattern. The identification of the kernel growth pathways has led to deeper understanding of the evolution of electronic structure and optic properties. 
    more » « less
  3. Recent advances in the determination of crystal structures and studies of optical properties of gold nanoclusters in the size range from tens to hundreds of gold atoms have started to reveal the grand evolution from gold complexes to nanoclusters and further to plasmonic nanoparticles. However, a detailed comparison of their photophysical properties is still lacking. Here, we compared the excited state behaviors of gold complexes, nanolcusters, and plasmonic nanoparticles, as well as small organic molecules by choosing four typical examples including the Au10 complex, Au25 nanocluster (1 nm metal core), 13 diameter Au nanoparticles, and Rhodamine B. To compare their photophysical behaviors, we performed steady-state absorption, photoluminescence, and femtosecond transient absorption spectroscopic measurements. It was found that gold nanoclusters behave somewhat like small molecules, showing both rapid internal conversion (<1 ps) and long-lived excited state lifetime (about 100 ns). Unlike the nanocluster form in which metal–metal transitions dominate, gold complexes showed significant charge transfer between metal atoms and surface ligands. Plasmonic gold nanoparticles, on the other hand, had electrons being heated and cooled (~100 ps time scale) after photo-excitation, and the relaxation was dominated by electron–electron scattering, electron–phonon coupling, and energy dissipation. In both nanoclusters and plasmonic nanoparticles, one can observe coherent oscillations of the metal core, but with different fundamental origins. Overall, this work provides some benchmarking features for organic dye molecules, organometallic complexes, metal nanoclusters, and plasmonic nanoparticles. 
    more » « less
  4. The transition from the discrete, excitonic state to the continuous, metallic state in thiolate-protected gold nanoclusters is of fundamental interest and has attracted significant efforts in recent research. Compared with optical and electronic transition behavior, the transition in magnetism from the atomic gold paramagnetism (Au 6s 1 ) to the band behavior is less studied. In this work, the magnetic properties of 1.7 nm [Au 133 (TBBT) 52 ] 0 nanoclusters (where TBBT = 4- tert -butylbenzenethiolate) with 81 nominal “valence electrons” are investigated by electron paramagnetic resonance (EPR) spectroscopy. Quantitative EPR analysis shows that each cluster possesses one unpaired electron (spin), indicating that the electrons fill into discrete orbitals instead of a continuous band, for that one electron in the band would give a much smaller magnetic moment. Therefore, [Au 133 (TBBT) 52 ] 0 possesses a nonmetallic electronic structure. Furthermore, we demonstrate that the unpaired spin can be removed by oxidizing [Au 133 (TBBT) 52 ] 0 to [Au 133 (TBBT) 52 ] + and the nanocluster transforms from paramagnetism to diamagnetism accordingly. The UV-vis absorption spectra remain the same in the process of single-electron loss or addition. Nuclear magnetic resonance (NMR) is applied to probe the charge and magnetic states of Au 133 (TBBT) 52 , and the chemical shifts of 52 surface TBBT ligands are found to be affected by the spin in the gold core. The NMR spectrum of Au 133 (TBBT) 52 shows a 13-fold splitting with 4-fold degeneracy of 52 TBBT ligands, which are correlated to the quasi- D 2 symmetry of the ligand shell. Overall, this work provides important insights into the electronic structure of Au 133 (TBBT) 52 by combining EPR, optical and NMR studies, which will pave the way for further understanding of the transition behavior in metal nanoclusters. 
    more » « less