Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
A series of cerium( iv ) mixed-ligand guanidinate–amide complexes, {[(Me 3 Si) 2 NC(N i Pr) 2 ] x Ce IV [N(SiMe 3 ) 2 ] 3−x } + ( x = 0–3), was prepared by chemical oxidation of the corresponding cerium( iii ) complexes, where x = 1 and 2 represent novel complexes. The Ce( iv ) complexes exhibited a range of intense colors, including red, black, cyan, and green. Notably, increasing the number of the guanidinate ligands from zero to three resulted in significant redshift of the absorption bands from 503 nm (2.48 eV) to 785 nm (1.58 eV) in THF. X-ray absorption near edge structure (XANES) spectra indicated increasing f occupancy ( n f ) with more guanidinate ligands, and revealed the multiconfigurational ground states for all Ce( iv ) complexes. Cyclic voltammetry experiments demonstrated less stabilization of the Ce( iv ) oxidation state with more guanidinate ligands. Moreover, the Ce( iv ) tris(guanidinate) complex exhibited temperature independent paramagnetism (TIP) arising from the small energy gap between the ground- and excited states with considerable magnetic moments. Computational analysis suggested that the origin of the low energy absorption bands was a charge transfer between guanidinate π orbitals thatmore »
-
For a family of uranium pyrazolylborate complexes, we observe correlations between excited-state mixing and slow relaxation of magnetization for U( iii ) complexes, and U⋯B distances in U( iv ) complexes.