Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Increasing area burned across western North America raises questions about the precedence and magnitude of changes in fire activity, relative to the historical range of variability (HRV) that ecosystems experienced over recent centuries and millennia. Paleoecological records of past fire occurrence provide context for contemporary changes in ecosystems characterized by infrequent, high-severity fire regimes. Here we present a network of 12 fire-history records derived from macroscopic charcoal preserved in sediments of small subalpine lakes within a c. 10 000 km2landscape in the U.S. northern Rocky Mountains (Northern Rockies). We used this network to characterize landscape-scale burning over the past 2500 yr, and to evaluate the precedence of widespread regional burning experienced in the early 20th and 21st centuries. We further compare the Northern Rockies fire history to a previously published network of fire-history records in the Southern Rockies. In Northern Rockies subalpine forests, widespread fire activity was strongly linked to seasonal climate conditions, in contemporary, historical, and paleo records. The average estimated fire rotation period (FRP) over the past 2500 yr was 164 yr (HRV: 127–225 yr), while the contemporary FRP from 1900 to 2021 CE was 215 yr. Thus, extensive regional burning in the early 20th century (e.g. 1910 CE) and in recent decades remains within the HRV of recent millennia. Results from the Northern Rockies contrast with the Southern Rockies, which burned with less frequency on average over the past 2500 yr, and where 21st-century burning has exceeded the HRV. Our results support expectations that Northern Rockies fire activity will continue to increase with climatic warming, surpassing historical burning if more than one exceptional fire year akin to 1910 occurs within the next several decades. The ecological consequences of climatic warming in subalpine forests will depend, in large part, on the magnitude of fire-regime changes relative to the past.more » « less
-
Liu, Junguo (Ed.)Abstract Structure loss is an acute, costly impact of the wildfire crisis in the western conterminous United States (“West”), motivating the need to understand recent trends and causes. We document a 246% rise in West-wide structure loss from wildfires between 1999–2009 and 2010–2020, driven strongly by events in 2017, 2018, and 2020. Increased structure loss was not due to increased area burned alone. Wildfires became significantly more destructive, with a 160% higher structure-loss rate (loss/kha burned) over the past decade. Structure loss was driven primarily by wildfires from unplanned human-related ignitions (e.g. backyard burning, power lines, etc.), which accounted for 76% of all structure loss and resulted in 10 times more structures destroyed per unit area burned compared with lightning-ignited fires. Annual structure loss was well explained by area burned from human-related ignitions, while decadal structure loss was explained by state-level structure abundance in flammable vegetation. Both predictors increased over recent decades and likely interacted with increased fuel aridity to drive structure-loss trends. While states are diverse in patterns and trends, nearly all experienced more burning from human-related ignitions and/or higher structure-loss rates, particularly California, Washington, and Oregon. Our findings highlight how fire regimes—characteristics of fire over space and time—are fundamentally social-ecological phenomena. By resolving the diversity of Western fire regimes, our work informs regionally appropriate mitigation and adaptation strategies. With millions of structures with high fire risk, reducing human-related ignitions and rethinking how we build are critical for preventing future wildfire disasters.more » « less
-
Abstract The wettest portion of the interior of western North America centers on the mountainous region spanning western Montana, Idaho, British Columbia, and Alberta. Inland ranges there capture the remnants of Pacific storms. Steep east–west hydroclimate gradients make the region sensitive to changes in inland-penetrating moisture that may have varied greatly during the Holocene. To investigate potential hydroclimate change, we produced a 7600-yr lake-level reconstruction from Silver Lake, located on the Montana–Idaho border. Ground-penetrating radar profiles and a transect of four shallow-water sediment cores that were dated using radiocarbon dating and tephrachronology revealed substantial changes in moisture through time. An organic-rich mud unit indicating wet and similar to modern conditions prior to 7000 cal yr BP is overlain by an erosional surface signifying drier than modern conditions from 7000–2800 cal yr BP. A subsequent time-transgressive increase in water levels from 2800–2300 cal yr BP is indicated by a layer of late Holocene muds, and is consistent with glacier expansion and increases in the abundance of mesic tree taxa in the region. Millennial-scale trends were likely driven by variations in orbital-scale forcing during the Holocene, but the regional outcomes probably depended upon factors such as the strength of the Aleutian Low, Pacific sea-surface temperature variability, and the frequency of atmospheric rivers over western North America.more » « less
-
The 2020 fire season punctuated a decades-long trend of increased fire activity across the western United States, nearly doubling the total area burned in the central Rocky Mountains since 1984. Understanding the causes and implications of such extreme fire seasons, particularly in subalpine forests that have historically burned infrequently, requires a long-term perspective not afforded by observational records. We place 21st century fire activity in subalpine forests in the context of climate and fire history spanning the past 2,000 y using a unique network of 20 paleofire records. Largely because of extensive burning in 2020, the 21st century fire rotation period is now 117 y, reflecting nearly double the average rate of burning over the past 2,000 y. More strikingly, contemporary rates of burning are now 22% higher than the maximum rate reconstructed over the past two millennia, during the early Medieval Climate Anomaly (MCA) (770 to 870 Common Era), when Northern Hemisphere temperatures were ∼0.3 °C above the 20th century average. The 2020 fire season thus exemplifies how extreme events are demarcating newly emerging fire regimes as climate warms. With 21st century temperatures now surpassing those during the MCA, fire activity in Rocky Mountain subalpine forests is exceeding the range of variability that shaped these ecosystems for millennia.more » « less
-
Abstract Wildfires strongly influence forest ecosystem processes, including carbon and nutrient cycling, and vegetation dynamics. As fire activity increases under changing climate conditions, the ecological and biogeochemical resilience of many forest ecosystems remains unknown.To investigate the resilience of forest ecosystems to changing climate and wildfire activity over decades to millennia, we developed a 4800‐year high‐resolution lake‐sediment record from Silver Lake, Montana, USA (47.360° N, 115.566° W). Charcoal particles, pollen grains, element concentrations and stable isotopes of C and N serve as proxies of past changes in fire, vegetation and ecosystem processes such as nitrogen cycling and soil erosion, within a small subalpine forest watershed. A published lake‐level history from Silver Lake provides a local record of palaeohydrology.A trend towards increased effective moisture over the late Holocene coincided with a distinct shift in the pollen assemblage c. 1900 yr BP, resulting from increased subalpine conifer abundance. Fire activity, inferred from peaks in macroscopic charcoal, decreased significantly after 1900 yr BP, from one fire event every 126 yr (83–184 yr, 95% CI) from 4800 to 1900 yr BP, to one event every 223 yr (175–280 yr) from 1900 yr BP to present.Across the record, individual fire events were followed by two distinct decadal‐scale biogeochemical responses, reflecting differences in ecosystem impacts of fires on watershed processes. These distinct biogeochemical responses were interpreted as reflecting fire severity, highlighting (i) erosion, likely from large or high‐severity fires, and (ii) nutrient transfers and enhanced within‐lake productivity, likely from lower severity or patchier fires. Biogeochemical and vegetation proxies returned to pre‐fire values within decades regardless of the nature of fire effects.Synthesis. Palaeorecords of fire and ecosystem responses provide a novel view revealing past variability in fire effects, analogous to spatial variability in fire severity observed within contemporary wildfires. Overall, the palaeorecord highlights ecosystem resilience to fire across long‐term variability in climate and fire activity. Higher fire frequencies in past millennia relative to the 20th and 21st century suggest that northern Rocky Mountain subalpine ecosystems could remain resilient to future increases in fire activity, provided continued ecosystem recovery within decades.more » « less
-
Forests store a large amount of terrestrial carbon, but this storage capacity is vulnerable to wildfire. Combustion, and subsequent tree mortality and soil erosion, can lead to increased carbon release and decreased carbon uptake. Previous work has shown that non-constant fire return intervals over the past 4000 years strongly shaped subalpine forest carbon trajectories. The extent to which fire-regime variability has impacted carbon trajectories in other subalpine forest types is unknown. Here, we explored the interactions between fire and carbon dynamics of 14 subalpine watersheds in Colorado, USA. We tested the impact of varying fire frequency over a ~2000 year period on ecosystem productivity and carbon storage using an improved biogeochemical model. High fire frequency simulations had overall lower carbon stocks across all sites compared to scenarios with lower fire frequencies, highlighting the importance of fire-frequency in determining ecosystem carbon storage. Additionally, variability in fire-free periods strongly influenced carbon trajectories across all the sites. Biogeochemical trajectories (e.g., increasing or decreasing total ecosystem carbon and carbon-to-nitrogen (C:N) ratios) did not vary among forest types but there were trends that they may vary by elevation. Lower-elevations sites had lower overall soil C:N ratios, potentially because of higher fire frequencies reducing carbon inputs more than nitrogen losses over time. Additional measurements of ecosystem response to fire-regime variability will be essential for improving estimates of carbon dynamics from Earth system models.more » « less