skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hill, J. Colin"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We use the full-mission Planck PR4 data to measure the CMB lensing convergence (κ)-thermal Sunyaev-Zel'dovich (tSZ, y ) cross-correlation signal, Cℓyκ. This is only the second measurement to date of this signal, following Hill and Spergel [J. Cosmol. Astropart. Phys. 02 (2014) 030, 10.1088/1475-7516/2014/02/030]. We perform the measurement using foreground-cleaned tSZ maps built from the PR4 frequency maps via a tailored needlet internal linear combination (NILC) code in our companion paper [F. McCarthy and J. C. Hill, companion paper, Phys. Rev. D 109, 023528 (2024)., 10.1103/PhysRevD.109.023528], in combination with the Planck PR4 κ maps and various systematic-mitigated PR3 κ maps. A serious systematic is the residual cosmic infrared background (CIB) signal in the tSZ map, as the high CIB—κ cross-correlation can significantly bias the inferred tSZ—κ cross-correlation. We mitigate this contamination by deprojecting the CIB in our NILC algorithm, using a moment deprojection approach to avoid leakage due to incorrect modeling of the CIB frequency dependence. We validate this method on mm-wave sky simulations. We fit a theoretical halo model to our measurement, finding a best-fit amplitude of A =0.82 ±0.21 (for the highest signal-to-noise PR4 κ map) or A =0.56 ±0.24 (for a PR3 κ map built from a tSZ-deprojected CMB map), indicating that the data are consistent with our fiducial model within ≈1 -2 σ . Although our error bars are similar to those of the previous measurement [J. C. Hill and D. N. Spergel, J. Cosmol. Astropart. Phys. 02 (2014) 030, 10.1088/1475-7516/2014/02/030], our method is significantly more robust to CIB contamination. Our moment-deprojection approach lays the foundation for future measurements of this signal with higher signal-to-noise κ and y maps from ground-based telescopes, which will precisely probe the astrophysics of the intracluster medium of galaxy groups and clusters in the intermediate-mass (M ∼1013- 1014h-1M⊙), high-z (z ≲1.5 , c.f. z ≲0.8 for the tSZ auto-power signal) regime, as well as CIB-decontaminated measurements of tSZ cross-correlations with other large-scale structure probes. 
    more » « less
  2. Extracting the cosmic microwave background (CMB) blackbody temperature power spectrum—which is dominated by the primary CMB signal and the kinematic Sunyaev-Zel'dovich (kSZ) effect—from millimeter-wave sky maps requires cleaning other sky components. In this work, we develop new methods to use large-scale structure (LSS) tracers to remove cosmic infrared background (CIB) and thermal Sunyaev-Zel'dovich (tSZ) contamination in such measurements. Our methods rely on the fact that LSS tracers are correlated with the CIB and tSZ signals, but their two-point correlations with the CMB and kSZ signals vanish on small scales, thus leaving the CMB blackbody power spectrum unbiased after cleaning. We develop methods analogous to delensing [de-CIB or de-(CIB +tSZ )] to clean CIB and tSZ contaminants using these tracers. We compare these methods to internal linear combination (ILC) methods, including novel approaches that incorporate the tracer maps in the ILC procedure itself, without requiring exact assumptions about the CIB spectral energy distribution. As a concrete example, we use the unWISE galaxy samples as tracers. We provide calculations for a combined Simons Observatory and Planck-like experiment, with our simulated sky model comprising eight frequencies from 93 to 353 GHz. Using unWISE tracers, improvements with our methods over current approaches are already non-negligible: we find improvements up to 20% in the kSZ power spectrum signal-to-noise ratio (SNR) when applying the de-CIB method to a tSZ-deprojected ILC map. These gains could be more significant when using additional LSS tracers from current surveys and will become even larger with future LSS surveys, with improvements in the kSZ power spectrum SNR up to 50%. For the total CMB blackbody power spectrum, these improvements stand at 4% and 7%, respectively. 
    more » « less
  3. Complex astrophysical systems often exhibit low-scatter relations between observable properties (e.g., luminosity, velocity dispersion, oscillation period). These scaling relations illuminate the underlying physics, and can provide observational tools for estimating masses and distances. Machine learning can provide a fast and systematic way to search for new scaling relations (or for simple extensions to existing relations) in abstract high-dimensional parameter spaces. We use a machine learning tool called symbolic regression (SR), which models patterns in a dataset in the form of analytic equations. We focus on the Sunyaev-Zeldovich flux−cluster mass relation ( Y SZ − M ), the scatter in which affects inference of cosmological parameters from cluster abundance data. Using SR on the data from the IllustrisTNG hydrodynamical simulation, we find a new proxy for cluster mass which combines Y SZ and concentration of ionized gas ( c gas ): M ∝ Y conc 3/5 ≡ Y SZ 3/5 (1 − A c gas ). Y conc reduces the scatter in the predicted M by ∼20 − 30% for large clusters ( M ≳ 10 14 h −1 M ⊙ ), as compared to using just Y SZ . We show that the dependence on c gas is linked to cores of clusters exhibiting larger scatter than their outskirts. Finally, we test Y conc on clusters from CAMELS simulations and show that Y conc is robust against variations in cosmology, subgrid physics, and cosmic variance. Our results and methodology can be useful for accurate multiwavelength cluster mass estimation from upcoming CMB and X-ray surveys like ACT, SO, eROSITA and CMB-S4. 
    more » « less
  4. ABSTRACT Feedback from active galactic nuclei (AGNs) and supernovae can affect measurements of integrated Sunyaev–Zeldovich (SZ) flux of haloes (YSZ) from cosmic microwave background (CMB) surveys, and cause its relation with the halo mass (YSZ–M) to deviate from the self-similar power-law prediction of the virial theorem. We perform a comprehensive study of such deviations using CAMELS, a suite of hydrodynamic simulations with extensive variations in feedback prescriptions. We use a combination of two machine learning tools (random forest and symbolic regression) to search for analogues of the Y–M relation which are more robust to feedback processes for low masses ($$M\lesssim 10^{14}\, \mathrm{ h}^{-1} \, \mathrm{ M}_\odot$$); we find that simply replacing Y → Y(1 + M*/Mgas) in the relation makes it remarkably self-similar. This could serve as a robust multiwavelength mass proxy for low-mass clusters and galaxy groups. Our methodology can also be generally useful to improve the domain of validity of other astrophysical scaling relations. We also forecast that measurements of the Y–M relation could provide per cent level constraints on certain combinations of feedback parameters and/or rule out a major part of the parameter space of supernova and AGN feedback models used in current state-of-the-art hydrodynamic simulations. Our results can be useful for using upcoming SZ surveys (e.g. SO, CMB-S4) and galaxy surveys (e.g. DESI and Rubin) to constrain the nature of baryonic feedback. Finally, we find that the alternative relation, Y–M*, provides complementary information on feedback than Y–M. 
    more » « less
  5. Abstract The thermal Sunyaev–Zel’dovich (tSZ) effect is a powerful tool with the potential for constraining directly the properties of the hot gas that dominates dark matter halos because it measures pressure and thus thermal energy density. Studying this hot component of the circumgalactic medium (CGM) is important because it is strongly impacted by star formation and active galactic nucleus (AGN) activity in galaxies, participating in the feedback loop that regulates star and black hole mass growth in galaxies. We study the tSZ effect across a wide halo-mass range using three cosmological hydrodynamical simulations: Illustris-TNG, EAGLE, and FIRE-2. Specifically, we present the scaling relation between the tSZ signal and halo mass and the (mass-weighted) radial profiles of gas density, temperature, and pressure for all three simulations. The analysis includes comparisons to Planck tSZ observations and to the thermal pressure profile inferred from the Atacama Cosmology Telescope (ACT) measurements. We compare these tSZ data to simulations to interpret the measurements in terms of feedback and accretion processes in the CGM. We also identify as-yet unobserved potential signatures of these processes that may be visible in future measurements, which will have the capability of measuring tSZ signals to even lower masses. We also perform internal comparisons between runs with different physical assumptions. We conclude (1) there is strong evidence for the impact of feedback atR500, but that this impact decreases by 5R500, and (2) the thermodynamic profiles of the CGM are highly dependent on the implemented model, such as cosmic-ray or AGN feedback prescriptions. 
    more » « less
  6. Abstract We describe the measurement and treatment of the telescope beams for the Atacama Cosmology Telescope's fourth data release, DR4. Observations of Uranus are used to measure the central portion (<12 ' ) of the beams to roughly -40 dB of the peak. Such planet maps in intensity are used to construct azimuthally averaged beam profiles, which are fit with a physically motivated model before being transformed into Fourier space. We investigate and quantify a number of percent-level corrections to the beams, all of which are important for precision cosmology. Uranus maps in polarization are used to measure the temperature-to-polarization leakage in the main part of the beams, which is ≲ 1% (2.5%) at 150 GHz (98 GHz). The beams also have polarized sidelobes, which are measured with observations of Saturn and deprojected from the ACT time-ordered data. Notable changes relative to past ACT beam analyses include an improved subtraction of the atmospheric effects from Uranus calibration maps, incorporation of a scattering term in the beam profile model, and refinements to the beam model uncertainties and the main temperature-to-polarization leakage terms in the ACT power spectrum analysis. 
    more » « less