skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Himwich, Zoe"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We study analogues of Sidorenko’s conjecture and the forcing conjecture in oriented graphs, showing that natural variants of these conjectures in directed graphs are equivalent to the asymmetric, undirected analogues of the conjectures. 
    more » « less
    Free, publicly-accessible full text available July 4, 2026
  2. Abstract For an oriented graph , let denote the size of aminimum feedback arc set, a smallest edge subset whose deletion leaves an acyclic subgraph. Berger and Shor proved that any ‐edge oriented graph satisfies . We observe that if an oriented graph has a fixed forbidden subgraph , the bound is sharp as a function of if is not bipartite, but the exponent in the lower order term can be improved if is bipartite. Using a result of Bukh and Conlon on Turán numbers, we prove that any rational number in is optimal as an exponent for some finite family of forbidden subgraphs. Our upper bounds come equipped with randomized linear‐time algorithms that construct feedback arc sets achieving those bounds. We also characterize directed quasirandomness via minimum feedback arc sets. 
    more » « less