skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Thursday, May 23 until 2:00 AM ET on Friday, May 24 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hines, Sophia K."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The interoceanic exchange of water masses is modulated by flow through key oceanic choke points in the Drake Passage, the Indonesian Seas, south of Africa, and south of Tasmania. Here, we use the neodymium isotope signature (εNd) of cold-water coral skeletons from intermediate depths (1460‒1689 m) to trace circulation changes south of Tasmania during the last glacial period. The key feature of our dataset is a long-term trend towards radiogenic εNdvalues of ~−4.6 during the Last Glacial Maximum and Heinrich Stadial 1, which are clearly distinct from contemporaneous Southern Ocean εNdof ~−7. When combined with previously published radiocarbon data from the same corals, our results indicate that a unique radiogenic and young water mass was present during this time. This scenario can be explained by a more vigorous Pacific overturning circulation that supported a deeper outflow of Pacific waters, including North Pacific Intermediate Water, through the Tasman Sea.

     
    more » « less
  2. Abstract. Spatially distant sources of neodymium (Nd) to the ocean that carry different isotopic signatures (εNd) have been shown to trace out major water masses and have thus been extensively used to study large-scale features of the ocean circulation both past and current. While the global marine Nd cycle is qualitatively well understood, a complete quantitative determination of all its components and mechanisms, such as the magnitude of its sources and the paradoxical conservative behavior of εNd, remains elusive. To make sense of the increasing collection of observational Nd and εNd data, in this model description paper we present and describe the Global Neodymium Ocean Model (GNOM) v1.0, the first inverse model of the global marine biogeochemical cycle of Nd. The GNOM is embedded in a data-constrained steady-state circulation that affords spectacular computational efficiency, which we leverage to perform systematic objective optimization, allowing us to make preliminary estimates of biogeochemical parameters. Owing to its matrix representation, the GNOM model is additionally amenable to novel diagnostics that allow us to investigate open questions about the Nd cycle with unprecedented accuracy. This model is open-source and freely accessible, is written in Julia, and its code is easily understandable and modifiable for further community developments, refinements, and experiments. 
    more » « less
  3. Abstract

    A common conception of the deep ocean during ice age episodes is that the upper circulation cell in the Atlantic was shoaled at the Last Glacial Maximum compared to today, and that this configuration facilitated enhanced carbon storage in the deep ocean, contributing to glacial CO2draw‐down. Here, we test this notion in the far South Atlantic, investigating changes in glacial circulation structure using paired neodymium and benthic carbon isotope measurements from International Ocean Discovery Program Site U1479, at 2,615 m water depth in the Cape Basin. We infer changes in circulation structure across the last glacial cycle by aligning our site with other existing carbon and neodymium isotope records from the Cape Basin, examining vertical isotope gradients, while determining the relative timing of inferred circulation changes at different depths. We find that Site U1479 had the most negative neodymium isotopic composition across the last glacial cycle among the analyzed sites, indicating that this depth was most strongly influenced by North Atlantic Deep Water (NADW) in both interglacial and glacial intervals. This observation precludes a hypothesized dramatic shoaling of NADW above ∼2,000 m. Our evidence, however, indicates greater stratification between mid‐depth and abyssal sites throughout the last glacial cycle, conditions that developed in Marine Isotope Stage 5. These conditions still may have contributed to glacial carbon storage in the deep ocean, despite little change in the mid‐depth ocean structure.

     
    more » « less
  4. Abstract

    High‐latitude Northern Hemisphere climate during the last glacial period was characterized by a series of abrupt climate changes, known as Dansgaard‐Oeschger events, which were recorded in Greenland ice cores as shifts in the oxygen isotopic composition of the ice. These shifts in inferred Northern Hemisphere high‐latitude temperature have been linked to changes in Atlantic meridional overturning strength. The response of ocean overturning circulation to forcing is nonlinear and a hierarchy of models have suggested that it may exist in multiple steady state configurations. Here, we use a time‐dependent coarse‐resolution isopycnal model with four density classes and two basins, linked by a Southern Ocean to explore overturning states and their stability to changes in external parameters. The model exhibits hysteresis in both the steady state stratification and overturning strength as a function of the magnitude of North Atlantic Deep Water formation. Hysteresis occurs as a result of two nonlinearities in the model—the surface buoyancy distribution in the Southern Ocean and the vertical diffusivity profile in the Atlantic and Indo‐Pacific basins. We construct a metric to assess circulation configuration in the model, motivated by observations from the Last Glacial Maximum, which show a different circulation structure from the modern. We find that circulation configuration is primarily determined by North Atlantic Deep Water density. The model results are used to suggest how ocean conditions may have influenced the pattern of Dansgaard‐Oeschger events across the last glacial cycle.

     
    more » « less