skip to main content

Search for: All records

Creators/Authors contains: "Hinz, P."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    The Large Binocular Telescope (LBT) has two 8.4 m primary mirrors that produce beams that can be combined coherently in a “Fizeau” interferometric mode. In principle, the Fizeau point-spread function (PSF) enables the probing of structure at a resolution up to three times better than that of the adaptive-optics-corrected PSF of a single 8.4 m telescope. In this work, we examined the nearby star Altair (5.13 pc, type A7V, hundreds of Myr to ≈1.4 Gyr) in the Fizeau mode with the LBT at Brα(4.05μm) and carried out angular differential imaging to search for companions. This work presents the first filled-aperture LBT Fizeau science data set to benefit from a correcting mirror that provides active phase control. In the analysis of theλ/Dangular regime, the sensitivity of the data set is down to ≈0.5Mat 1″ for a 1.0 Gyr system. This sensitivity remains limited by the small amount of integration time, which is in turn limited by the instability of the Fizeau PSF. However, in the Fizeau fringe regime we attain sensitivities of Δm≈ 5 at 0.″2 and put constraints on companions of 1.3Mdown to an inner angle of ≈0.″15, closer than any previously published direct imaging of Altair. This analysismore »is a pathfinder for future data sets of this type, and represents some of the first steps to unlocking the potential of the first Extremely Large Telescope. Fizeau observations will be able to reach dimmer targets with upgrades to the instrument, in particular the phase detector.

    « less
  2. Abstract We present near-infrared Large Binocular Telescope LMIRCam imagery of the disk around the Herbig Ae/Be star AB Aurigae. A comparison of the surface brightness at K s (2.16 μ m), H 2 O narrowband (3.08 μ m), and L ′ (3.7 μ m) allows us to probe the presence of icy grains in this (pre)transitional disk environment. By applying reference differential imaging point-spread function subtraction, we detect the disk at high signal-to-noise ratios in all three bands. We find strong morphological differences between the bands, including asymmetries consistent with the observed spiral arms within 100 au in L ′ . An apparent deficit of scattered light at 3.08 μ m relative to the bracketing wavelengths ( K s and L ′ ) is evocative of ice absorption at the disk surface layer. However, the Δ( K s − H 2 O) color is consistent with grains with little to no ice (0%–5% by mass). The Δ ( H 2 O − L ′ ) color, conversely, suggests grains with a much higher ice mass fraction (∼0.68), and the two colors cannot be reconciled under a single grain population model. Additionally, we find that the extremely red Δ ( Kmore »s − L ′ ) disk color cannot be reproduced under conventional scattered light modeling with any combination of grain parameters or reasonable local extinction values. We hypothesize that the scattering surfaces at the three wavelengths are not colocated, and that the optical depth effects in each wavelength result from probing the grain population at different disk surface depths. The morphological similarity between K s and H 2 O suggests that their scattering surfaces are near one another, lending credence to the Δ( K s − H 2 O) disk color constraint of <5% ice mass fraction for the outermost scattering disk layer.« less
    Free, publicly-accessible full text available March 2, 2023
  3. Context. HD 113337 is a main-sequence F6V field star more massive than the Sun. This star hosts one confirmed giant planet and possibly a second candidate, detected by radial velocities (RVs). The star also hosts a cold debris disc detected through the presence of an infrared excess, making it an interesting system to explore. Aims. We aim to bring new constraints on the star’s fundamental parameters, debris disc properties, and planetary companion(s) by combining complementary techniques. Methods. We used the VEGA interferometer on the CHARA array to measure the angular diameter of HD 113337. We derived its linear radius using the parallax from the Gaia Second Data Release. We computed the bolometric flux to derive its effective temperature and luminosity, and we estimated its mass and age using evolutionary tracks. Then, we used Herschel images to partially resolve the outer debris disc and estimate its extension and inclination. Next, we acquired high-contrast images of HD 113337 with the LBTI to probe the ~10–80 au separation range. Finally, we combined the deduced contrast maps with previous RVs of the star using the MESS2 software to bring upper mass limits on possible companions at all separations up to 80 au. We tookmore »advantage of the constraints on the age and inclination brought by fundamental parameter analysis and disc imaging, respectively, for this analysis. Results. We derive a limb-darkened angular diameter of 0.386 ± 0.009 mas that converts into a linear radius of 1.50 ± 0.04 R ⊙ for HD 113337. The fundamental parameter analysis leads to an effective temperature of 6774 ± 125 K and to two possible age solutions: one young within 14–21 Myr and one old within 0.8–1.7 Gyr. We partially resolve the known outer debris disc and model its emission. Our best solution corresponds to a radius of 85 ± 20 au, an extension of 30 ± 20 au, and an inclination within 10–30° for the outer disc. The combination of imaging contrast limits, published RV, and age and inclination solutions allows us to derive a first possible estimation of the true masses of the planetary companions: ~7 −2 +4 M Jup for HD 113337 b (confirmed companion) and ~16 −3 +10 M Jup for HD 113337 c (candidate companion). We also constrain possible additional companions at larger separations.« less
  4. Over the last decade, the vector-apodizing phase plate (vAPP) coronagraph has been developed from concept to on-sky application in many high-contrast imaging systems on 8 m class telescopes. The vAPP is a geometric-phase patterned coronagraph that is inherently broadband, and its manufacturing is enabled only by direct-write technology for liquid-crystal patterns. The vAPP generates two coronagraphic point spread functions (PSFs) that cancel starlight on opposite sides of the PSF and have opposite circular polarization states. The efficiency, that is, the amount of light in these PSFs, depends on the retardance offset from a half-wave of the liquid-crystal retarder. Using different liquid-crystal recipes to tune the retardance, different vAPPs operate with high efficiencies (><#comment/>96%<#comment/>) in the visible and thermal infrared (0.55 µm to 5 µm). Since 2015, seven vAPPs have been installed in a total of six different instruments, including Magellan/MagAO, Magellan/MagAO-X, Subaru/SCExAO, and LBT/LMIRcam. Using two integral field spectrographs installed on the latter two instruments, these vAPPs can provide low-resolution spectra (R∼<#comment/>30) between 1 µm and 5 µm. We review the design process, development, commissioning, on-sky performance, and first scientific results of all commissioned vAPPs. We report on the lessons learned and conclude with perspectives for future developmentsmore »and applications.

    « less