skip to main content


Search for: All records

Creators/Authors contains: "Hiramatsu, Daichi"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. We present an optical photometric and spectroscopic analysis of the fast-declining hydrogen-rich Type II supernova (SN) 2019nyk. The light curve properties of SN 2019nyk align well with those of other fast-declining Type II SNe, such as SNe 2013by and 2014G. SN 2019nyk exhibits a peak absolute magnitude of −18.09 ± 0.17 mag in theVband, followed by a rapid decline at 2.84  ±  0.03 mag (100 d)−1during the recombination phase. The early spectra of SN 2019nyk exhibit high-ionisation emission features as well as narrow H Balmer lines, persisting until 4.1 d since explosion, indicating the presence of circumstellar material (CSM) in close proximity. A comparison of these features with other Type II SNe displaying an early interaction reveals similarities between these features and those observed in SNe 2014G and 2023ixf. We also compared the early spectra to literature models, estimating a mass-loss rate of the order of 10−3Myr−1. Radiation hydrodynamical modelling of the light curve also suggests the mass loss from the progenitor within a short period prior to explosion, totalling 0.16Mof material within 2900Rof the progenitor. Furthermore, light curve modelling infers a zero-age main sequence mass of 15Mfor the progenitor, a progenitor radius of 1031R, and an explosion energy of 1.1 × 1051erg.

     
    more » « less
    Free, publicly-accessible full text available May 1, 2025
  2. Abstract

    We present optical photometry and spectroscopy of the Type IIn supernova (SN) 2021qqp. Its unusual light curve is marked by a long precursor for ≈300 days, a rapid increase in brightness for ≈60 days, and then a sharp increase of ≈1.6 mag in only a few days to a first peak ofMr≈ −19.5 mag. The light curve then declines rapidly until it rebrightens to a second distinct peak ofMr≈ −17.3 mag centered at ≈335 days after the first peak. The spectra are dominated by Balmer lines with a complex morphology, including a narrow component with a width of ≈1300 km s−1(first peak) and ≈2500 km s−1(second peak) that we associate with the circumstellar medium (CSM) and a P Cygni component with an absorption velocity of ≈8500 km s−1(first peak) and ≈5600 km s−1(second peak) that we associate with the SN–CSM interaction shell. Using the luminosity and velocity evolution, we construct a flexible analytical model, finding two significant mass-loss episodes with peak mass loss rates of ≈10 and ≈5Myr−1about 0.8 and 2 yr before explosion, respectively, with a total CSM mass of ≈2–4M. We show that the most recent mass-loss episode could explain the precursor for the year preceding the explosion. The SN ejecta mass is constrained to be ≈5–30Mfor an explosion energy of ≈(3–10) × 1051erg. We discuss eruptive massive stars (luminous blue variable, pulsational pair instability) and an extreme stellar merger with a compact object as possible progenitor channels.

     
    more » « less
    Free, publicly-accessible full text available March 29, 2025
  3. Abstract

    We present photometric and spectroscopic observations of SN 2023fyq, a Type Ibn supernova (SN) in the nearby galaxy NGC 4388 (D≃ 18 Mpc). In addition, we trace the 3 yr long precursor emission at the position of SN 2023fyq using data from DLT40, ATLAS, Zwicky Transient Facility, ASAS-SN, Swift, and amateur astronomer Koichi Itagaki. The double-peaked postexplosion light curve reaches a luminosity of ∼1043erg s−1. The strong intermediate-width He lines observed in the nebular spectrum imply the interaction is still active at late phases. We found that the precursor activity in SN 2023fyq is best explained by the mass transfer in a binary system involving a low-mass He star and a compact companion. An equatorial disk is likely formed in this process (∼0.6M), and the interaction of SN ejecta with this disk powers the second peak of the SN. The early SN light curve reveals the presence of dense extended material (∼0.3M) at ∼3000Rejected weeks before the SN explosion, likely due to final-stage core silicon burning or runaway mass transfer resulting from binary orbital shrinking, leading to rapid-rising precursor emission within ∼30 days prior to explosion. The final explosion could be triggered either by the core collapse of the He star or by the merger of the He star with a compact object. SN 2023fyq, along with SN 2018gjx and SN 2015G, forms a unique class of Type Ibn SNe, which originate in binary systems and are likely to exhibit detectable long-lasting pre-explosion outbursts with magnitudes ranging from −10 to −13.

     
    more » « less
  4. Abstract

    The progenitor system(s) as well as the explosion mechanism(s) of thermonuclear (Type Ia) supernovae are long-standing issues in astrophysics. Here we present ejecta masses and other physical parameters for 28 recent Type Ia supernovae inferred from multiband photometric and optical spectroscopic data. Our results confirm that the majority of SNe Ia showobservableejecta masses below the Chandrasekhar-limit (having a meanMej≈ 1.1 ± 0.3M), consistent with the predictions of recent sub-MChexplosion models. They are compatible with models assuming either single- or double-degenerate progenitor configurations. We also recover a sub-sample of supernovae within 1.2M<Mej< 1.5Mthat are consistent with near-Chandrasekhar explosions. Taking into account the uncertainties of the inferred ejecta masses, about half of our SNe are compatible with both explosion models. We compare our results with those in previous studies, and discuss the caveats and concerns regarding the applied methodology.

     
    more » « less
    Free, publicly-accessible full text available September 1, 2025
  5. Abstract

    SN 2023ixf was discovered in M101 within a day of the explosion and rapidly classified as a Type II supernova with flash features. Here we present ultraviolet (UV) spectra obtained with the Hubble Space Telescope 14, 19, 24, and 66 days after the explosion. Interaction between the supernova ejecta and circumstellar material (CSM) is seen in the UV throughout our observations in the flux of the first three epochs and asymmetric Mgiiemission on day 66. We compare our observations to CMFGEN supernova models that include CSM interaction (Ṁ<103Myr−1) and find that the power from CSM interaction is decreasing with time, fromLsh≈ 5 × 1042erg s−1toLsh≈ 1 × 1040erg s−1between days 14 and 66. We examine the contribution of individual atomic species to the spectra on days 14 and 19, showing that the majority of the features are dominated by iron, nickel, magnesium, and chromium absorption in the ejecta. The UV spectral energy distribution of SN 2023ixf sits between that of supernovae, which show no definitive signs of CSM interaction, and those with persistent signatures assuming the same progenitor radius and metallicity. Finally, we show that the evolution and asymmetric shape of the Mgiiλλ2796, 2802 emission are not unique to SN 2023ixf. These observations add to the early measurements of dense, confined CSM interaction, tracing the mass-loss history of SN 2023ixf to ∼33 yr prior to the explosion and the density profile to a radius of ∼5.7 × 1015cm. They show the relatively short evolution from a quiescent red supergiant wind to high mass loss.

     
    more » « less
  6. Abstract

    We present optical observations and analysis of the bright type Iax supernova SN 2020udy hosted by NGC 0812. The evolution of the light curve of SN 2020udy is similar to that of other bright type Iax SNe. Analytical modeling of the quasi-bolometric light curves of SN 2020udy suggests that 0.08 ± 0.01Mof56Ni would have been synthesized during the explosion. The spectral features of SN 2020udy are similar to those of the bright members of type Iax class, showing a weak Siiiline. The late-time spectral sequence is mostly dominated by iron group elements with broad emission lines. Abundance tomography modeling of the spectral time series of SN 2020udy usingTARDISindicates stratification in the outer ejecta; however, to confirm this, spectral modeling at a very early phase is required. After maximum light, uniform mixing of chemical elements is sufficient to explain the spectral evolution. Unlike in the case of normal type Ia SNe, the photospheric approximation remains robust until +100 days, requiring an additional continuum source. Overall, the observational features of SN 2020udy are consistent with the deflagration of a carbon–oxygen white dwarf.

     
    more » « less
    Free, publicly-accessible full text available April 1, 2025
  7. ABSTRACT

    We present the most comprehensive catalogue to date of Type I superluminous supernovae (SLSNe), a class of stripped-envelope supernovae (SNe) characterized by exceptionally high luminosities. We have compiled a sample of 262 SLSNe reported through 2022 December 31. We verified the spectroscopic classification of each SLSN and collated an exhaustive data set of ultraviolet, optical, and infrared photometry totalling over 30 000 photometric detections. Using these data, we derive observational parameters such as the peak absolute magnitudes, rise and decline time-scales, as well as bolometric luminosities, temperature, and photospheric radius evolution for all SLSNe. Additionally, we model all light curves using a hybrid model that includes contributions from both a magnetar central engine and the radioactive decay of $^{56}$Ni. We explore correlations among various physical and observational parameters, and recover the previously found relation between ejecta mass and magnetar spin, as well as the overall progenitor pre-explosion mass distribution with a peak at $\approx 6.5$ M$_\odot$. We find no significant redshift dependence for any parameter, and no evidence for distinct subtypes of SLSNe. We find that only a small fraction of SLSNe, $\lt 3$ per cent, are best fit with a significant radioactive decay component $\gtrsim 50$ per cent. We provide several analytical tools designed to simulate typical SLSN light curves across a broad range of wavelengths and phases, enabling accurate K-corrections, bolometric scaling calculations, and inclusion of SLSNe in survey simulations or future comparison works.

     
    more » « less
  8. Abstract

    AT 2020mot is a typical UV/optical tidal disruption event (TDE) with no radio or X-ray signatures in a quiescent host. We find ani-band excess and rebrightening along the decline of the light curve which could be due to two consecutive dust echoes from the TDE. We model our observations following van Velzen et al. and find that the near-infrared light curve can be explained by concentric rings of thin dust within ∼0.1 pc of a ∼6 × 106Msupermassive black hole (SMBH), among the smallest scales at which dust has been inferred near SMBHs. We find dust covering factors of orderfc≤ 2%, much lower than found for dusty tori of active galactic nuclei. These results highlight the potential of TDEs for uncovering the environments around black holes when including near-infrared observations in high-cadence transient studies.

     
    more » « less
  9. Abstract We present 1.3 mm (230 GHz) observations of the recent and nearby Type II supernova, SN 2023ixf, obtained with the Submillimeter Array (SMA) at 2.6–18.6 days after explosion. The observations were obtained as part the SMA Large Program, POETS (Pursuit of Extragalactic Transients with the SMA). We do not detect any emission at the location of SN 2023ixf, with the deepest limits of L ν (230 GHz) ≲ 8.6 × 10 25 erg s −1 Hz −1 at 2.7 and 7.7 days, and L ν (230 GHz) ≲ 3.4 × 10 25 erg s −1 Hz −1 at 18.6 days. These limits are about a factor of 2 times dimmer than the millimeter emission from SN 2011dh (IIb), about 1 order of magnitude dimmer compared to SN 1993J (IIb) and SN 2018ivc (IIL), and about 30 times dimmer than the most luminous nonrelativistic SNe in the millimeter band (Type IIb/Ib/Ic). Using these limits in the context of analytical models that include synchrotron self-absorption and free–free absorption, we place constraints on the proximate circumstellar medium around the progenitor star, to a scale of ∼2 × 10 15 cm, excluding the range M ̇ ∼ few × 10 − 6 − 10 − 2 M ⊙ yr −1 (for a wind velocity, v w = 115 km s −1 , and ejecta velocity, v ej ∼ (1 − 2) × 10 4 km s −1 ). These results are consistent with an inference of the mass-loss rate based on optical spectroscopy (∼2 × 10 −2 M ⊙ yr −1 for v w = 115 km s −1 ), but are in tension with the inference from hard X-rays (∼7 × 10 −4 M ⊙ yr −1 for v w = 115 km s −1 ). This tension may be alleviated by a nonhomogeneous and confined CSM, consistent with results from high-resolution optical spectroscopy. 
    more » « less
  10. Abstract

    We present comprehensive optical observations of SN 2021gmj, a Type II supernova (SN II) discovered within a day of explosion by the Distance Less Than 40 Mpc survey. Follow-up observations show that SN 2021gmj is a low-luminosity SN II (LL SN II), with a peak magnitudeMV= −15.45 and an Feiivelocity of ∼1800 km s−1at 50 days past explosion. Using the expanding photosphere method, we derive a distance of17.80.4+0.6Mpc. From the tail of the light curve we obtain a radioactive nickel mass ofM56Ni= 0.014 ± 0.001M. The presence of circumstellar material (CSM) is suggested by the early-time light curve, early spectra, and high-velocity Hαin absorption. Analytical shock-cooling models of the light curve cannot reproduce the fast rise, supporting the idea that the early-time emission is partially powered by the interaction of the SN ejecta and CSM. The inferred low CSM mass of 0.025Min our hydrodynamic-modeling light-curve analysis is also consistent with our spectroscopy. We observe a broad feature near 4600 Å, which may be high-ionization lines of C, N, or/and Heii. This feature is reproduced by radiation-hydrodynamic simulations of red supergiants with extended atmospheres. Several LL SNe II show similar spectral features, implying that high-density material around the progenitor may be common among them.

     
    more » « less