skip to main content

Attention:

The NSF Public Access Repository (PAR) system and access will be unavailable from 11:00 PM ET on Friday, December 13 until 2:00 AM ET on Saturday, December 14 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hirsch, Krista"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract

    An experimental investigation and the optical modeling of the structural coloration produced from total internal reflection interference within 3D microstructures are described. Ray‐tracing simulations coupled with color visualization and spectral analysis techniques are used to model, examine, and rationalize the iridescence generated for a range of microgeometries, including hemicylinders and truncated hemispheres, under varying illumination conditions. An approach to deconstruct the observed iridescence and complex far‐field spectral features into its elementary components and systematically link them to ray trajectories that emanate from the illuminated microstructures is demonstrated. The results are compared with experiments, wherein microstructures are fabricated with methods such as chemical etching, multiphoton lithography, and grayscale lithography. Microstructure arrays patterned on surfaces with varying orientation and size lead to unique color‐traveling optical effects and highlight opportunities for how total internal reflection interference can be used to create customizable reflective iridescence. The findings herein provide a robust conceptual framework for rationalizing this multibounce interference mechanism and establish approaches for characterizing and tailoring the optical and iridescent properties of microstructured surfaces.

     
    more » « less