skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hirschfeldt, Denis R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. For [Formula: see text], the coarse similarity class of A, denoted by [Formula: see text], is the set of all [Formula: see text] such that the symmetric difference of A and B has asymptotic density 0. There is a natural metric [Formula: see text] on the space [Formula: see text] of coarse similarity classes defined by letting [Formula: see text] be the upper density of the symmetric difference of A and B. We study the metric space of coarse similarity classes under this metric, and show in particular that between any two distinct points in this space there are continuum many geodesic paths. We also study subspaces of the form [Formula: see text] where [Formula: see text] is closed under Turing equivalence, and show that there is a tight connection between topological properties of such a space and computability-theoretic properties of [Formula: see text]. We then define a distance between Turing degrees based on Hausdorff distance in the metric space [Formula: see text]. We adapt a proof of Monin to show that the Hausdorff distances between Turing degrees that occur are exactly 0, [Formula: see text], and 1, and study which of these values occur most frequently in the senses of Lebesgue measure and Baire category. We define a degree a to be attractive if the class of all degrees at distance [Formula: see text] from a has measure 1, and dispersive otherwise. In particular, we study the distribution of attractive and dispersive degrees. We also study some properties of the metric space of Turing degrees under this Hausdorff distance, in particular the question of which countable metric spaces are isometrically embeddable in it, giving a graph-theoretic sufficient condition for embeddability. Motivated by a couple of issues arising in the above work, we also study the computability-theoretic and reverse-mathematical aspects of a Ramsey-theoretic theorem due to Mycielski, which in particular implies that there is a perfect set whose elements are mutually 1-random, as well as a perfect set whose elements are mutually 1-generic. Finally, we study the completeness of [Formula: see text] from the perspectives of computability theory and reverse mathematics. 
    more » « less
  2. Hirschfeldt and Jockusch (2016) introduced a two-player game in which winning strategies for one or the other player precisely correspond to implications and non-implications between [Formula: see text] principles over [Formula: see text]-models of [Formula: see text]. They also introduced a version of this game that similarly captures provability over [Formula: see text]. We generalize and extend this game-theoretic framework to other formal systems, and establish a certain compactness result that shows that if an implication [Formula: see text] between two principles holds, then there exists a winning strategy that achieves victory in a number of moves bounded by a number independent of the specific run of the game. This compactness result generalizes an old proof-theoretic fact noted by H. Wang (1981), and has applications to the reverse mathematics of combinatorial principles. We also demonstrate how this framework leads to a new kind of analysis of the logical strength of mathematical problems that refines both that of reverse mathematics and that of computability-theoretic notions such as Weihrauch reducibility, allowing for a kind of fine-structural comparison between [Formula: see text] principles that has both computability-theoretic and proof-theoretic aspects, and can help us distinguish between these, for example by showing that a certain use of a principle in a proof is “purely proof-theoretic”, as opposed to relying on its computability-theoretic strength. We give examples of this analysis to a number of principles at the level of [Formula: see text], uncovering new differences between their logical strengths. 
    more » « less