Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            Ground ice content of the Arctic soils largely dictates the effects of climate change-induced permafrost degradation and top ground destabilization. The current circumarctic information on ground ice content is overly coarse for many key applications, including assessments of hazards to Arctic infrastructure, while detailed data are restricted to very few regions. This study aims to address these gaps by presenting spatially comprehensive data on pore and segregated ground ice content across the Northern Hemisphere permafrost region at a 1-km resolution. First, ground ice content datasets (n=437 and 380 1-km grid cells for volumetric and gravimetric ice content, respectively) were compiled from field observations over the permafrost region. Spatial estimates of ground ice content in the near-surface permafrost north of the 30th parallel north were then produced by relating observed ground ice content to physically relevant environmental data layers of climate, soil, topography, and vegetation properties using a statistical modelling framework. The produced data show that ground ice content varies substantially across the permafrost region. The highest ice contents are found on peat-dominated Arctic lowlands and along major river basins. Low ice contents are associated with mountainous areas and many sporadic and isolated permafrost regions. The modelling yields relatively small prediction errors (a mean absolute error of 13.6 % volumetric ice content) over evaluation data and broadly congruent spatial distributions with earlier regional-scale studies. The presented data allow the consideration of ground ice content in various geomorphological, ecological, and environmental impact assessment applications at a scale that is more relevant than previous products. The produced ground ice data are available in the supplement for this study and at Zenodo https://doi.org/10.5281/zenodo.7009875 (Karjalainen et al., 2022).more » « less
- 
            Abstract The presence of ground ice in Arctic soils exerts a major effect on permafrost hydrology and ecology, and factors prominently into geomorphic landform development. As most ground ice has accumulated in near-surface permafrost, it is sensitive to variations in atmospheric conditions. Typical and regionally widespread permafrost landforms such as pingos, ice-wedge polygons, and rock glaciers are closely tied to ground ice. However, under ongoing climate change, suitable environmental spaces for preserving landforms associated with ice-rich permafrost may be rapidly disappearing. We deploy a statistical ensemble approach to model, for the first time, the current and potential future environmental conditions of three typical permafrost landforms, pingos, ice-wedge polygons and rock glaciers across the Northern Hemisphere. We show that by midcentury, the landforms are projected to lose more than one-fifth of their suitable environments under a moderate climate scenario (RCP4.5) and on average around one-third under a very high baseline emission scenario (RCP8.5), even when projected new suitable areas for occurrence are considered. By 2061–2080, on average more than 50% of the recent suitable conditions can be lost (RCP8.5). In the case of pingos and ice-wedge polygons, geographical changes are mainly attributed to alterations in thawing-season precipitation and air temperatures. Rock glaciers show air temperature-induced regional changes in suitable conditions strongly constrained by topography and soil properties. The predicted losses could have important implications for Arctic hydrology, geo- and biodiversity, and to the global climate system through changes in biogeochemical cycles governed by the geomorphology of permafrost landscapes. Moreover, our projections provide insights into the circumpolar distribution of various ground ice types and help inventory permafrost landforms in unmapped regions.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
