Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
There has been a recent interest to develop and standardize Robust Authenticated Encryption schemes. NIST, for example, is considering an Accordion mode for (wideblock) tweakable blockcipher, with Robust AE as a primary application. At the same time, recent attacks and applications suggest that encryption context needs to be committed. Indeed, committing security is also a design consideration in Accordion mode. In this work, we give a modular solution for this problem. We first show how to transform any wideblock tweakable blockcipher TE to a Robust AE scheme SE that commits just the key. The overhead is cheap, just a few finite-field multiplications and blockcipher calls. If one wants to commit the entire encryption context, one can simply hash the context to derive a 256-bit subkey, and uses SE on that subkey. The use of 256-bit key on SE only means that it has to rely on AES-256 but doesn't require TE to have 256-bit key. Our approach frees the Accordion designs from consideration of committing security. Moreover, it gives a big saving for several key-committing applications that don't want to pay the inherent hashing cost of full committing.more » « lessFree, publicly-accessible full text available December 10, 2025
-
Recent attacks and applications have led to the need for symmetric encryption schemes that, in addition to providing the usual authenticity and privacy, are also committing. In response, many committing authenticated encryption schemes have been proposed. However, all known schemes, in order to provide s bits of committing security, suffer an expansion---this is the length of the ciphertext minus the length of the plaintext---of 2s bits. This incurs a cost in bandwidth or storage. (We typically want s=128, leading to 256-bit expansion.) However, it has been considered unavoidable due to birthday attacks. We show how to bypass this limitation. We give authenticated encryption (AE) schemes that provide s bits of committing security, yet suffer expansion only around s as long as messages are long enough, namely more than s bits. We call such schemes succinct. We do this via a generic, ciphertext-shortening transform called SC: given an AE scheme with 2s-bit expansion, SC returns an AE scheme with s-bit expansion while preserving committing security. SC is very efficient; an AES-based instantiation has overhead just two AES calls. As a tool, SC uses a collision-resistant invertible PRF called HtM, that we design, and whose analysis is technically difficult. To add the committing security that SC assumes to a base scheme, we also give a transform CTY that improves Chan and Rogaway's CTX. Our results hold in a general framework for authenticated encryption that includes both classical AEAD and AE2 (also called nonce-hiding AE) as special cases, so that we in particular obtain succinctly-committing AE schemes for both these settings.more » « less
-
Recent attacks and applications have led to the need for symmetric encryption schemes that, in addition to providing the usual authenticity and privacy, are also committing. In response, many committing authenticated encryption schemes have been proposed. However, all known schemes, in order to provide s bits of committing security, suffer an expansion---this is the length of the ciphertext minus the length of the plaintext---of 2s bits. This incurs a cost in bandwidth or storage. (We typically want s=128, leading to 256-bit expansion.) However, it has been considered unavoidable due to birthday attacks. We show how to bypass this limitation. We give authenticated encryption (AE) schemes that provide s bits of committing security, yet suffer expansion only around s as long as messages are long enough, namely more than s bits. We call such schemes succinct. We do this via a generic, ciphertext-shortening transform called SC: given an AE scheme with 2s-bit expansion, SC returns an AE scheme with s-bit expansion while preserving committing security. SC is very efficient; an AES-based instantiation has overhead just two AES calls. As a tool, SC uses a collision-resistant invertible PRF called HtM, that we design, and whose analysis is technically difficult. To add the committing security that SC assumes to a base scheme, we also give a transform CTY that improves Chan and Rogaway's CTX. Our results hold in a general framework for authenticated encryption that includes both classical AEAD and AE2 (also called nonce-hiding AE) as special cases, so that we in particular obtain succinctly-committing AE schemes for both these settings.more » « less
-
This paper provides efficient authenticated-encryption (AE) schemes in which a ciphertext is a commitment to the key. These are extended, at minimal additional cost, to schemes where the ciphertext is a commitment to all encryption inputs, meaning key, nonce, associated data and message. Our primary schemes are modifications of GCM (for basic, unique-nonce AE security) and AES-GCM-SIV (for misuse-resistant AE security) and add both forms of commitment without any increase in ciphertext size. We also give more generic, but somewhat more costly, solutions.more » « less
-
null (Ed.)We analyze the multi-user security of the streaming encryption in Google's Tink library via an extended version of the framework of nonce-based online authenticated encryption of Hoang et al. (CRYPTO'15) to support random-access decryption. We show that Tink's design choice of using random nonces and a nonce-based key-derivation function indeed improves the concrete security bound. We then give two better alternatives that are more robust against randomness failure. In addition, we show how to efficiently instantiate the key-derivation function via AES, instead of relying on HMAC-SHA256 like the current design in Tink. To accomplish this we give a multi-user analysis of the XOR-of-permutation construction of Bellare, Krovetz, and Rogaway (EUROCRYPT'98).more » « less
-
null (Ed.)We study the security of CTR-DRBG , one of NIST’s recommended Pseudorandom Number Generator (PRNG) designs. Recently, Woodage and Shumow (Eurocrypt’ 19), and then Cohney et al. (S&P’ 20) point out some potential vulnerabilities in both NIST specification and common implementations of CTR-DRBG . While these researchers do suggest counter-measures, the security of the patched CTR-DRBG is still questionable. Our work fills this gap, proving that CTR-DRBG satisfies the robustness notion of Dodis et al. (CCS’13), the standard security goal for PRNGs.more » « less
-
As High Performance Computing (HPC) applications with data security requirements are increasingly moving to execute in the public cloud, there is a demand that the cloud infrastructure for HPC should support privacy and integrity. Incorporating privacy and integrity mechanisms in the communication infrastructure of today's public cloud is challenging because recent advances in the networking infrastructure in data centers have shifted the communication bottleneck from the network links to the network end points and because encryption is computationally intensive. In this work, we consider incorporating encryption to support privacy and integrity in the Message Passing Interface (MPI) library, which is widely used in HPC applications. We empirically study four contemporary cryptographic libraries, OpenSSL, BoringSSL, Libsodium, and CryptoPP using micro-benchmarks and NAS parallel benchmarks to evaluate their overheads for encrypting MPI messages on two different networking technologies, 10Gbps Ethernet and 40Gbps InfiniBand. The results indicate that (1) the performance differs drastically across cryptographic libraries, and (2) effectively supporting privacy and integrity in MPI communications on high speed data center networks is challenging-even with the most efficient cryptographic library, encryption can still introduce very significant overheads in some scenarios such as a single MPI communication operation on InfiniBand, but (3) the overall overhead may not be prohibitive for practical uses since there can be multiple concurrent communications.more » « less
An official website of the United States government

Full Text Available