Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Mesophotic coral ecosystems (MCEs) are tropical reefs found at depths of ~30–150 m, below the region most heavily impacted by heat stress and other disturbances. Hence, MCEs may serve as potential refugia for threatened shallow reefs, but they also harbour depth‐endemic fauna distinct from shallow reefs. Previous studies have characterized biodiversity patterns along depth gradients, but focussed primarily on conspicuous taxa (fishes, corals, etc.). Environmental DNA (eDNA) metabarcoding offers a more holistic approach to assess biodiversity patterns across the tree of life. Here, we use three metabarcoding assays targeting fishes (16S rRNA), eukaryotes (18S rDNA) and metazoans (COI) to assess biodiversity change from the surface to ~90 m depth across 15‐m intervals at three sites within the Hawaiian Archipelago. We observed significant community differences between most depth zones, with distinct zonation centred at 45–60 m for eukaryotes and metazoans, but not for fishes. This finding may be attributable to the higher mobility of reef fishes, although methodological limitations are likely a contributing factor. The possibility for MCEs to serve as refugia is not excluded for fishes, but invertebrate communities >45 m are distinct, indicating limited connectivity for the majority of reef fauna. This study provides a new approach for surveying biodiversity on MCEs, revealing patterns in a much broader context than the limited‐taxon studies that comprise the bulk of our present knowledge.
-
null (Ed.)Included among the currently recognized 23 species of combtooth blennies of the genus Cirripectes (Blenniiformes: Blenniidae) of the Indo-Pacific are the Hawaiian endemic C. vanderbilti , and the widespread C. variolosus . During the course of a phylogeographic study of these species, a third species was detected, herein described as C. matatakaro . The new species is distinguished primarily by the configuration of the pore structures posterior to the lateral centers of the transverse row of nuchal cirri in addition to 12 meristic characters and nine morphometric characters documented across 72 specimens and ∼4.2% divergence in mtDNA cytochrome oxidase subunit I. The new species is currently known only from the Marquesas, Gambier, Pitcairns, Tuamotus, and Australs in the South Pacific, and the Northern Line Islands and possibly Johnston Atoll south of Hawaiʻi. Previous researchers speculated that the geographically widespread C. variolosus was included in an unresolved trichotomy with the Hawaiian endemic and other species based on a morphological phylogeny. Our molecular-phylogenetic analysis resolves many of the previously unresolved relationships within the genus and reveals C. matatakaro as the sister lineage to the Hawaiian C. vanderbilti . The restricted geographic distribution of Cirripectes matatakaro combines with its status as sister to C. vanderbilti to indicate a southern pathway of colonization into Hawaiʻi.more » « less