skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hobson, Keith A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract Identifying the composition of avian diets is a critical step in characterizing the roles of birds within ecosystems. However, because birds are a diverse taxonomic group with equally diverse dietary habits, gaining an accurate and thorough understanding of avian diet can be difficult. In addition to overcoming the inherent difficulties of studying birds, the field is advancing rapidly, and researchers are challenged with a myriad of methods to study avian diet, a task that has only become more difficult with the introduction of laboratory techniques to dietary studies. Because methodology drives inference, it is important that researchers are aware of the capabilities and limitations of each method to ensure the results of their study are interpreted correctly. However, few reviews exist which detail each of the traditional and laboratory techniques used in dietary studies, with even fewer framing these methods through a bird-specific lens. Here, we discuss the strengths and limitations of morphological prey identification, DNA-based techniques, stable isotope analysis, and the tracing of dietary biomolecules throughout food webs. We identify areas of improvement for each method, provide instances in which the combination of techniques can yield the most comprehensive findings, introduce potential avenues for combining results from each technique within a unified framework, and present recommendations for the future focus of avian dietary research. 
    more » « less
  2. Abstract ‘The Blob’, a mass of anomalously warm water in the Northeast Pacific Ocean peaking from 2014 to 2016, caused a decrease in primary productivity with cascading effects on the marine ecosystem. Among the more obvious manifestations of the event were seabird breeding failures and mass mortality events. Here, we used corticosterone in breast feathers (fCort), grown in the winter period during migration, as an indicator of nutritional stress to investigate the impact of the Blob on two sentinel Pacific auk species (family Alcidae). Feathers were collected from breeding females over 8 years from 2010 to 2017, encompassing the Blob period. Since Pacific auks replace body feathers at sea during the migratory period, measures of fCort provide an accumulated measure of nutritional stress or allostatic load during this time. Changes in diet were also measured using δ15N and δ13C values from feathers. Relative to years prior to the Blob, the primarily zooplanktivorous Cassin’s auklets (Ptychoramphus aleuticus) had elevated fCort in 2014–2017, which correlated with the occurrence of the Blob and a recovery period afterwards, with relatively stable feather isotope values. In contrast, generalist rhinoceros auklets (Cerorhinca monocerata) displayed stable fCort values across years and increased δ15N values during the Blob. As marine heatwaves increase in intensity and frequency due to climate change, this study provides insight into the variable response of Pacific auks to such phenomena and suggests a means for monitoring population-level responses to climatological variation. 
    more » « less
  3. Abstract Stable hydrogen and oxygen isotopic compositions (δ2H and δ18O, respectively) of animal tissues have been used to infer geographical origin or mobility based on the premise that the isotopic composition of tissue is systematically related to that of local water sources. Isotopic data for known‐origin samples are required to quantify these tissue–environment relationships. Although many of such data have been published and could be reused by researchers, differences in the standards used for calibration and analytical procedures for different datasets limit the comparability of these data.We develop an algorithm that uses results from comparative analysis of secondary standards to transform data among reference scales and estimate the uncertainty inherent in these transformations. We apply the algorithm to a compilation of known‐origin keratin data published over the past ~20 years.We show that transformation improves the comparability of data from different laboratories, and that the transformed data suggest ecophysiologically meaningful differences in keratin–water relationships among different animal groups and taxa.The compiled data and algorithms are freely available in the ASSIGNRr‐package to support geographical provenance research, and more generally offer a methodology overcoming several challenges in geochemical data integration and reuse. 
    more » « less