skip to main content

Search for: All records

Creators/Authors contains: "Hodge, J. A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    We present the spectroscopic confirmation of the brightest known gravitationally lensed Lyman-break galaxy in the Epoch of Reionization (EoR), A1703-zD1, through the detection of [C ii] 158 $\mu$m at a redshift of z = 6.8269 ± 0.0004. This source was selected behind the strong lensing cluster Abell 1703, with an intrinsic luminosity and a very blue Spitzer/Infrared Array Camera (IRAC) [3.6]–[4.5] colour, implying high equivalent width line emission of [O iii] + Hβ. [C ii] is reliably detected at 6.1σ cospatial with the rest-frame ultraviolet (UV) counterpart, showing similar spatial extent. Correcting for the lensing magnification, the [C ii] luminosity in A1703-zD1 is broadly consistent with the local $L_{\rm [C\, {\small II}]}$–star formation rate (SFR) relation. We find a clear velocity gradient of 103 ± 22 km $\rm s^{-1}$ across the source that possibly indicates rotation or an ongoing merger. We furthermore present spectral scans with no detected [C ii] above 4.6σ in two unlensed Lyman-break galaxies in the Extended Groth Strip (EGS)-Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) field at z ∼ 6.6–6.9. This is the first time that the Northern Extended Millimeter Array (NOEMA) has been successfully used to observe [C ii] in a ‘normal’ star-forming galaxy at z > 6, and our results demonstrate its capability to complement the Atacama Large Millimeter/submillimeter Array (ALMA) inmore »confirming galaxies in the EoR.

    « less
  2. Abstract The high-frequency radio sky has historically remained largely unexplored due to the typical faintness of sources in this regime, and the modest survey speed compared to observations at lower frequencies. However, high-frequency radio surveys offer an invaluable tracer of high-redshift star formation, as they directly target the faint radio free–free emission. We present deep continuum observations at 34 GHz in the COSMOS and GOODS-North fields from the Karl G. Jansky Very Large Array (VLA), as part of the COLD z survey. The deep COSMOS mosaic spans down to σ = 1.3 μ Jy beam −1 , while the wider GOODS-N observations cover to σ = 5.3 μ Jy beam −1 . We detect a total of 18 galaxies at 34 GHz, of which nine show radio emission consistent with being powered by star formation; although for two sources, this is likely due to thermal emission from dust. Utilizing deep ancillary radio data at 1.4, 3, 5, and 10 GHz, we decompose the spectra of the remaining seven star-forming galaxies into their synchrotron and thermal free–free components, and find typical thermal fractions and synchrotron spectral indices comparable to those observed in local star-forming galaxies. We further determine free–free star formationmore »rates (SFRs), and show that these are in agreement with SFRs from spectral energy distribution-fitting and the far-infrared/radio correlation. Our observations place strong constraints on the high-frequency radio emission in typical galaxies at high redshift, and provide some of the first insights into what is set to become a key area of study with future radio facilities, such as the Square Kilometer Array Phase 1 and next-generation VLA.« less