skip to main content

Search for: All records

Creators/Authors contains: "Hoeppner, D. J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Neural cell instance segmentation serves as a valuable tool for the study of neural cell behaviors. In general, the instance segmentation methods compute the region of interest (ROI) through a detection module, where the segmentation is sub- sequently performed. To precisely segment the neural cells, especially their tiny and slender structures, existing work em- ploys a u-net structure to preserve the low-level details and encode the high-level semantics. However, such method is insufficient for differentiating the adjacent cells when large parts of them are included in the same cropped ROI. To solve this problem, we propose a context-refined neural cellmore »instance segmentation model that learns to suppress the back- ground information. In particular, we employ a light-weight context refinement module to recalibrate the deep features and focus the model exclusively on the target cell within each cropped ROI. The proposed model is efficient and accurate, and experimental results demonstrate its superiority com- pared to the state-of-the-arts.« less
  2. Instance segmentation of neural cells plays an important role in brain study. However, this task is challenging due to the special shapes and behaviors of neural cells. Existing methods are not precise enough to capture their tiny structures, e.g., filopodia and lamellipodia, which are critical to the understanding of cell interaction and behavior. To this end, we propose a novel deep multi-task learning model to jointly detect and segment neural cells instance-wise. Our method is built upon SSD, with ResNet101 as the backbone to achieve both high detection accuracy and fast speed. Furthermore, unlike existing works which tend to producemore »wavy and inaccurate boundaries, we embed a deconvolution module into SSD to better capture details. Experiments on a dataset of neural cell microscopic images show that our method is able to achieve better per- formance in terms of accuracy and efficiency, comparing favorably with current state-of-the-art methods.« less
  3. Accurate cell instance segmentation plays an important role in the study of neural cell interactions, which are critical for understanding the development of brain. These interactions are performed through the filopodia and lamellipodia of neural cells, which are extremely tiny structures and as a result render most existing instance segmentation methods powerless to precisely capture them. To solve this issue, in this paper we present a novel hierarchical neural network comprising object detection and segmentation modules. Compared to previous work, our model is able to efficiently share and make full use of the information at different levels between the twomore »modules. Our method is simple yet powerful, and experimental results show that it captures the contours of neural cells, especially the filopodia and lamellipodia, with high accuracy, and outperforms recent state of the art by a large margin.« less
  4. Identifying the lineage path of neural cells is critical for understanding the development of brain. Accurate neural cell detection is a crucial step to obtain reliable delineation of cell lineage. To solve this task, in this paper we present an efficient neural cell detection method based on SSD (single shot multibox detector) neural network model. Our method adapts the original SSD architecture and removes the un- necessary blocks, leading to a light-weight model. More- over, we formulate the cell detection as a binary regression problem, which makes our model much simpler. Experimen- tal results demonstrate that, with only a smallmore »training set, our method is able to accurately capture the neural cells under severe shape deformation in a fast way.« less