Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract The demographic history of a population is important for conservation and evolution, but this history is unknown for many populations. Methods that use genomic data have been developed to infer demography, but they can be challenging to implement and interpret, particularly for large populations. Thus, understanding if and when genetic estimates of demography correspond to true population history is important for assessing the performance of these genetic methods. Here, we used double‐digest restriction‐site associated DNA (ddRAD) sequencing data from archived collections of larval summer flounder (Paralichthys dentatus,n = 279) from three cohorts (1994–1995, 1997–1998 and 2008–2009) along the U.S. East coast to examine how contemporary effective population size and genetic diversity responded to changes in abundance in a natural population. Despite little to no detectable change in genetic diversity, coalescent‐based demographic modelling from site frequency spectra revealed that summer flounder effective population size declined dramatically in the early 1980s. The timing and direction of change corresponded well with the observed decline in spawning stock census abundance in the late 1980s from independent fish surveys. Census abundance subsequently recovered and achieved the prebottleneck size. Effective population size also grew following the bottleneck. Our results for summer flounder demonstrate that genetic sampling and site frequency spectra can be useful for detecting population dynamics, even in species with large effective sizes.more » « less
-
Although the concept of connectivity is ubiquitous in ecology and evolution, its definition is often inconsistent, particularly in interdisciplinary research. In an ecological context, population connectivity refers to the movement of individuals or species across a landscape. It is measured by locating organisms and tracking their occurrence across space and time. In an evolutionary context, connectivity is typically used to describe levels of current and past gene flow, calculated from the degree of genetic similarity between populations. Both connectivity definitions are useful in their specific contexts, but rarely are these two perspectives combined. Different definitions of connectivity could result in misunderstandings across subdisciplines. Here, we unite ecological and evolutionary perspectives into a single unifying framework by advocating for connectivity to be conceptualized as a generational continuum. Within this framework, connectivity can be subdivided into three timescales: (1) within a generation (e.g., movement), (2) across one parent-offspring generation (e.g., dispersal), and (3) across two or more generations (e.g., gene flow), with each timescale determining the relevant context and dictating whether the connectivity has ecological or evolutionary consequences. Applying our framework to real-world connectivity questions can help to identify sampling limitations associated with a particular methodology, further develop research questions and hypotheses, and investigate eco-evolutionary feedback interactions that span the connectivity continuum. We hope this framework will serve as a foundation for conducting and communicating research across subdisciplines, resulting in a more holistic understanding of connectivity in natural systems.more » « less
-
Understanding how evolutionary forces interact to drive patterns of selection and distribute genetic variation across a species' range is of great interest in ecology and evolution, especially in an era of global change. While theory predicts how and when populations at range margins are likely to undergo local adaptation, empirical evidence testing these models remains sparse. Here, we address this knowledge gap by investigating the relationship between selection, gene flow and genetic drift in the yellowtail clownfish, Amphiprion clarkii, from the core to the northern periphery of the species range. Analyses reveal low genetic diversity at the range edge, gene flow from the core to the edge and genomic signatures of local adaptation at 56 single nucleotide polymorphisms in 25 candidate genes, most of which are significantly correlated with minimum annual sea surface temperature. Several of these candidate genes play a role in functions that are upregulated during cold stress, including protein turnover, metabolism and translation. Our results illustrate how spatially divergent selection spanning the range core to the periphery can occur despite the potential for strong genetic drift at the range edge and moderate gene flow from the core populations.more » « less