skip to main content

Attention:

The NSF Public Access Repository (NSF-PAR) system and access will be unavailable from 11:00 PM ET on Friday, July 12 until 2:00 AM ET on Saturday, July 13 due to maintenance. We apologize for the inconvenience.


Search for: All records

Creators/Authors contains: "Hoffman, Kentaro"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available August 1, 2024
  2. Steed et al . ( 1 ) illustrates the crucial impact that the quality of official statistical data products may exert on the accuracy, stability, and equity of policy decisions on which they are based. The authors remind us that data, however responsibly curated, can be fallible. With this comment, we underscore the importance of conducting principled quality assessment of official statistical data products. We observe that the quality assessment procedure employed by Steed et al . needs improvement, due to (i) the inadmissibility of the estimator used, and (ii) the inconsistent probability model it induces on the joint space of the estimator and the observed data. We discuss the design of alternative statistical methods to conduct principled quality assessments for official statistical data products, showcasing two simulation-based methods for admissible minimax shrinkage estimation via multilevel empirical Bayesian modeling. For policymakers and stakeholders to accurately gauge the context-specific usability of data, the assessment should take into account both uncertainty sources inherent to the data and the downstream use cases, such as policy decisions based on those data products. 
    more » « less
  3. Free, publicly-accessible full text available August 1, 2024