skip to main content

Search for: All records

Creators/Authors contains: "Hoffman, Lauren"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Physics-based simulations of Arctic sea ice are highly complex, involving transport between different phases, length scales, and time scales. Resultantly, numerical simulations of sea ice dynamics have a high computational cost and model uncertainty. We employ data-driven machine learning (ML) to make predictions of sea ice motion. The ML models are built to predict present-day sea ice velocity given present-day wind velocity and previous-day sea ice concentration and velocity. Models are trained using reanalysis winds and satellite-derived sea ice properties. We compare the predictions of three different models: persistence (PS), linear regression (LR), and a convolutional neural network (CNN). We quantify the spatiotemporal variability of the correlation between observations and the statistical model predictions. Additionally, we analyze model performance in comparison to variability in properties related to ice motion (wind velocity, ice velocity, ice concentration, distance from coast, bathymetric depth) to understand the processes related to decreases in model performance. Results indicate that a CNN makes skillful predictions of daily sea ice velocity with a correlation up to 0.81 between predicted and observed sea ice velocity, while the LR and PS implementations exhibit correlations of 0.78 and 0.69, respectively. The correlation varies spatially and seasonally: lower values occur in shallow coastal regions and during times of minimum sea ice extent. LR parameter analysis indicates that wind velocity plays the largest role in predicting sea ice velocity on 1-day time scales, particularly in the central Arctic. Regions where wind velocity has the largest LR parameter are regions where the CNN has higher predictive skill than the LR. 
    more » « less
    Free, publicly-accessible full text available October 1, 2024
  2. Abstract Atmospheric rivers (ARs) result in precipitation over land and ocean. Rainfall on the ocean can generate a buoyant layer of freshwater that impacts exchanges between the surface and the mixed layer. These “fresh lenses” are important for weather and climate because they may impact the ocean stratification at all time scales. Here we use in situ ocean data, collocated with AR events, and a one-dimensional configuration of a general circulation model, to investigate the impact of AR precipitation on surface ocean salinity in the California Current System (CCS) on seasonal and event-based time scales. We find that at coastal and onshore locations the CCS freshens through the rainy season due to AR events, and years with higher AR activity are associated with a stronger freshening signal. On shorter time scales, model simulations suggest that events characteristic of CCS ARs can produce salinity changes that are detectable by ocean instruments (≥0.01 psu). Here, the surface salinity change depends linearly on rain rate and inversely on wind speed. Higher wind speeds ( U > 8 m s −1 ) induce mixing, distributing freshwater inputs to depths greater than 20 m. Lower wind speeds ( U ≤ 8 m s −1 ) allow freshwater lenses to remain at the surface. Results suggest that local precipitation is important in setting the freshwater seasonal cycle of the CCS and that the formation of freshwater lenses should be considered for identifying impacts of atmospheric variability on the upper ocean in the CCS on weather event time scales. Significance Statement Atmospheric rivers produce large amounts of rainfall. The purpose of this study is to understand how this rain impacts the surface ocean in the California Current System on seasonal and event time scales. Our results show that a greater precipitation over the rainy season leads to a larger decrease in salinity over time. On shorter time scales, these atmospheric river precipitation events commonly produce a surface salinity response that is detectable by ocean instruments. This salinity response depends on the amount of rainfall and the wind speed. In general, higher wind speeds will cause the freshwater input from rain to mix deeper, while lower wind speeds will have reduced mixing, allowing a layer of freshwater to persist at the surface. 
    more » « less