skip to main content

Search for: All records

Creators/Authors contains: "Hoffmann, M."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Free, publicly-accessible full text available January 10, 2023
  2. Motivated by the fact that in a space where shortest paths are unique, no two shortest paths meet twice, we study a question posed by Greg Bodwin: Given a geodetic graph G, i.e., an unweighted graph in which the shortest path between any pair of vertices is unique, is there a philogeodetic drawing of G, i.e., a drawing of G in which the curves of any two shortest paths meet at most once? We answer this question in the negative by showing the existence of geodetic graphs that require some pair of shortest paths to cross at least four times. The bound on the number of crossings is tight for the class of graphs we construct. Furthermore, we exhibit geodetic graphs of diameter two that do not admit a philogeodetic drawing.
  3. We initiate the study of Simultaneous Graph Embedding with Fixed Edges in the beyond planarity framework. In the QSEFE problem, we allow edge crossings, as long as each graph individually is drawn quasiplanar, that is, no three edges pairwise cross. %We call this problem the QSEFE problem. We show that a triple consisting of two planar graphs and a tree admit a QSEFE. This result also implies that a pair consisting of a 1-planar graph and a planar graph admits a QSEFE. We show several other positive results for triples of planar graphs, in which certain structural properties for their common subgraphs are fulfilled. For the case in which simplicity is also required, we give a triple consisting of two quasiplanar graphs and a star that does not admit a QSEFE. Moreover, in contrast to the planar SEFE problem, we show that it is not always possible to obtain a QSEFE for two matchings if the quasiplanar drawing of one matching is fixed.
  4. Free, publicly-accessible full text available January 1, 2023