- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources2
- Resource Type
-
0000000002000000
- More
- Availability
-
11
- Author / Contributor
- Filter by Author / Creator
-
-
Hofmann, Lukas (2)
-
Mandato, Alysia (2)
-
Ruthstein, Sharon (2)
-
Saxena, Sunil (2)
-
Casto, Joshua (1)
-
Gevorkyan‐Airapetov, Lada (1)
-
Ghosh, Shreya (1)
-
Igbaria‐Jaber, Yasmin (1)
-
Shenberger, Yulia (1)
-
Yakobov, Idan (1)
-
Yasin, Ameer (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Bacteria use specialized proteins, like transcription factors, to rapidly control metal ion balance. CueR is a Gram‐negative bacterial copper regulator. The structure ofE. coliCueR complexed with Cu(I) and DNA was published, since then many studies have shed light on its function. However,P. aeruginosaCueR, which shows high sequence similarity toE. coliCueR, has been less studied. Here, we applied room‐temperature electron paramagnetic resonance (EPR) measurements to explore changes in dynamics ofP. aeruginosaCueR in dependency of copper concentrations and interaction with two different DNA promoter regions. We showed thatP. aeruginosaCueR is less dynamic than theE. coliCueR protein and exhibits much higher sensitivity to DNA binding as compared to itsE. coliCueR homolog. Moreover, a difference in dynamical behavior was observed whenP. aeruginosaCueR binds to thecopZ2DNA promoter sequence compared to themexPQ‐opmEpromoter sequence. Such dynamical differences may affect the expression levels of CopZ2 and MexPQ‐OpmE proteins inP. aeruginosa. Overall, such comparative measurements of protein‐DNA complexes derived from different bacterial systems reveal insights about how structural and dynamical differences between two highly homologous proteins lead to quite different DNA sequence‐recognition and mechanistic properties.more » « lessFree, publicly-accessible full text available August 1, 2025
-
Casto, Joshua; Mandato, Alysia; Hofmann, Lukas; Yakobov, Idan; Ghosh, Shreya; Ruthstein, Sharon; Saxena, Sunil (, Chemical Science)Understanding the structural and mechanistic details of protein-DNA interactions that lead to cellular defence against toxic metal ions in pathogenic bacteria can lead to new ways of combating their virulence. Herein, we examine the Copper Efflux Regulator (CueR) protein, a transcription factor which interacts with DNA to generate proteins that ameliorate excess free Cu( i ). We exploit site directed Cu( ii ) labeling to measure the conformational changes in DNA as a function of protein and Cu( i ) concentration. Unexpectedly, the EPR data indicate that the protein can bend the DNA at high protein concentrations even in the Cu( i )-free state. On the other hand, the bent state of the DNA is accessed at a low protein concentration in the presence of Cu( i ). Such bending enables the coordination of the DNA with RNA polymerase. Taken together, the results lead to a structural understanding of how transcription is activated in response to Cu( i ) stress and how Cu( i )-free CueR can replace Cu( i )-bound CueR in the protein-DNA complex to terminate transcription. This work also highlights the utility of EPR to measure structural data under conditions that are difficult to access in order to shed light on protein function.more » « less