skip to main content


Search for: All records

Creators/Authors contains: "Holbrook, Sally J."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Melzner, Frank (Ed.)
    With marine heat waves increasing in intensity and frequency due to climate change, it is important to understand how thermal disturbances will alter coral reef ecosystems since stony corals are highly susceptible to mortality from thermally-induced, mass bleaching events. In Moorea, French Polynesia, we evaluated the response and fate of coral following a major thermal stress event in 2019 that caused a substantial amount of branching coral (predominantly Pocillopora ) to bleach and die. We investigated whether Pocillopora colonies that occurred within territorial gardens protected by the farmerfish Stegastes nigricans were less susceptible to or survived bleaching better than Pocillopora on adjacent, undefended substrate. Bleaching prevalence (proportion of the sampled colonies affected) and severity (proportion of a colony’s tissue that bleached), which were quantified for >1,100 colonies shortly after they bleached, did not differ between colonies within or outside of defended gardens. By contrast, the fates of 399 focal colonies followed for one year revealed that a bleached coral within a garden was a third less likely to suffer complete colony death and about twice as likely to recover to its pre-bleaching cover of living tissue compared to Pocillopora outside of a farmerfish garden. Our findings indicate that while residing in a farmerfish garden may not reduce the bleaching susceptibility of a coral to thermal stress, it does help buffer a bleached coral against severe outcomes. This oasis effect of farmerfish gardens, where survival and recovery of thermally-damaged corals are enhanced, is another mechanism that helps explain why large Pocillopora colonies are disproportionately more abundant in farmerfish territories than elsewhere in the lagoons of Moorea, despite gardens being relatively uncommon. As such, some farmerfishes may have an increasingly important role in maintaining the resilience of branching corals as the frequency and intensity of marine heat waves continue to increase. 
    more » « less
  2. Detecting the impacts of natural and anthropogenic disturbances that cause declines in organisms or changes in community composition has long been a focus of ecology. However, a tradeoff often exists between the spatial extent over which relevant data can be collected, and the resolution of those data. Recent advances in underwater photogrammetry, as well as computer vision and machine learning tools that employ artificial intelligence (AI), offer potential solutions with which to resolve this tradeoff. Here, we coupled a rigorous photogrammetric survey method with novel AI-assisted image segmentation software in order to quantify the impact of a coral bleaching event on a tropical reef, both at an ecologically meaningful spatial scale and with high spatial resolution. In addition to outlining our workflow, we highlight three key results: (1) dramatic changes in the three-dimensional surface areas of live and dead coral, as well as the ratio of live to dead colonies before and after bleaching; (2) a size-dependent pattern of mortality in bleached corals, where the largest corals were disproportionately affected, and (3) a significantly greater decline in the surface area of live coral, as revealed by our approximation of the 3D shape compared to the more standard planar area (2D) approach. The technique of photogrammetry allows us to turn 2D images into approximate 3D models in a flexible and efficient way. Increasing the resolution, accuracy, spatial extent, and efficiency with which we can quantify effects of disturbances will improve our ability to understand the ecological consequences that cascade from small to large scales, as well as allow more informed decisions to be made regarding the mitigation of undesired impacts.

     
    more » « less
    Free, publicly-accessible full text available August 1, 2024
  3. Abstract

    Mounting evidence suggests that fishing can be a major driver of coral‐to‐macroalgae regime shifts on tropical reefs. In many small‐scale coral reef fisheries, fishers target herbivorous fishes, which can weaken coral resilience via reduced herbivory on macroalgae that then outcompete corals. Previous models that explored the effects of harvesting herbivores revealed hysteresis in the herbivory–benthic state relationship that results in bistability of coral‐ and macroalgae‐dominated states over some levels of fishing pressure, which has been supported by empirical evidence. However, past models have not accounted for the functional differences among herbivores or how fisher selectivity for different herbivore functional groups may alter the benthic dynamics and resilience. Here, we use a dynamic model that links differential fishing on two key herbivore functional groups to the outcome of competitive dynamics between coral and macroalgae. We show that reef state depends not only on the level of fishing but also on the types of herbivores targeted by fishers. Selectively fishing browsing herbivores that are capable of consuming mature macroalgae (e.g., unicornfish) increases precariousness of the coral state by moving the system close to the coral‐to‐macroalgae tipping point. By contrast, selectively harvesting grazing herbivores that are only capable of preventing macroalgae from becoming established (e.g., parrotfishes) can increase catch yields substantially more before the tipping point is reached. However, this lower precariousness with increasing fishing effort comes at the cost of increasing the range of fishing effort over which coral and macroalgae are bistable; increasing hysteresis makes a regime shift triggered by a disturbance more difficult or impractical to reverse. Our results suggest that management strategies for small‐scale coral reef fisheries should consider how functional differences among harvested herbivores coupled with fisher selectivity influence benthic dynamics in light of the trade‐off between tipping point precariousness and coral recovery dynamics following large disturbances.

     
    more » « less
  4. Abstract

    Surveying coastal systems to estimate distribution and abundance of fish and benthic organisms is labor‐intensive, often resulting in spatially limited data that are difficult to scale up to an entire reef or island. We developed a method that leverages the automation of a machine learning platform, CoralNet, to efficiently and cost‐effectively allow a single observer to simultaneously generate georeferenced data on abundances of fish and benthic taxa over large areas in shallow coastal environments. Briefly, a researcher conducts a fish survey while snorkeling on the surface and towing a float equipped with a handheld GPS and a downward‐facing GoPro, passively taking ~ 10 photographs per meter of benthos. Photographs and surveys are later georeferenced and photographs are automatically annotated by CoralNet. We found that this method provides similar biomass and density values for common fishes as traditional scuba‐based fish counts on fixed transects, with the advantage of covering a larger area. Our CoralNet validation determined that while photographs automatically annotated by CoralNet are less accurate than photographs annotated by humans at the level of a single image, the automated approach provides comparable or better estimations of the percent cover of the benthic substrates at the level of a minute of survey (~ 50 m2of reef) due to the volume of photographs that can be automatically annotated, providing greater spatial coverage of the site. This method can be used in a variety of shallow systems and is particularly advantageous when spatially explicit data or surveys of large spatial extents are necessary.

     
    more » « less