skip to main content

Search for: All records

Creators/Authors contains: "Holden, Zachary A."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. null (Ed.)
  2. null (Ed.)
  3. Abstract Patterns of energy and available moisture can vary over small (<1 km) distances in mountainous terrain. Information on fuel and soil moisture conditions that resolves this variation could help to inform fire and drought management decisions. Here, we describe the development of TOPOFIRE, a web-based mapping system designed to provide finely resolved information on soil water balance, drought, and wildfire danger information for the contiguous United States. We developed 8-arc-second-resolution (~250 meter) daily historical, near real-time, and 4-day forecast radiation, temperature, humidity, and snow water equivalent data and used these grids to calculate a suite of drought and wildfire danger indices. Large differences in shortwave radiation and surface air temperature with aspect contribute to greater snow accumulation and delays in melt timing on north-facing slopes, delaying fuel conditioning on shaded slopes. These datasets will help advance our understanding of the role of topography in wildland fire spread and ecological effects. Integration with national programs like the Wildland Fire Assessment System, the Wildland Fire Decision Support System, and drought early warning systems could support more proactive management of wildland fires and refine the characterization of drought in mountainous regions of the United States. 
    more » « less
  4. Climate change is increasing fire activity in the western United States, which has the potential to accelerate climate-induced shifts in vegetation communities. Wildfire can catalyze vegetation change by killing adult trees that could otherwise persist in climate conditions no longer suitable for seedling establishment and survival. Recently documented declines in postfire conifer recruitment in the western United States may be an example of this phenomenon. However, the role of annual climate variation and its interaction with long-term climate trends in driving these changes is poorly resolved. Here we examine the relationship between annual climate and postfire tree regeneration of two dominant, low-elevation conifers (ponderosa pine and Douglas-fir) using annually resolved establishment dates from 2,935 destructively sampled trees from 33 wildfires across four regions in the western United States. We show that regeneration had a nonlinear response to annual climate conditions, with distinct thresholds for recruitment based on vapor pressure deficit, soil moisture, and maximum surface temperature. At dry sites across our study region, seasonal to annual climate conditions over the past 20 years have crossed these thresholds, such that conditions have become increasingly unsuitable for regeneration. High fire severity and low seed availability further reduced the probability of postfire regeneration. Together, our results demonstrate that climate change combined with high severity fire is leading to increasingly fewer opportunities for seedlings to establish after wildfires and may lead to ecosystem transitions in low-elevation ponderosa pine and Douglas-fir forests across the western United States.

    more » « less
  5. Abstract Aim

    Climate warming is increasing fire activity in many of Earth’s forested ecosystems. Because fire is a catalyst for change, investigation of post‐fire vegetation response is critical to understanding the potential for future conversions from forest to non‐forest vegetation types. We characterized the influences of climate and terrain on post‐fire tree regeneration and assessed how these biophysical factors might shape future vulnerability to wildfire‐driven forest conversion.


    Montane forests, Rocky Mountains, USA.

    Time period


    Taxa studied

    Pinus ponderosa;Pseudotsuga menziesii.


    We developed a database of dendrochronological samples (n = 717) and plots (n = 1,301) in post‐fire environments spanning a range of topoclimatic settings. We then used statistical models to predict annual post‐fire seedling establishment suitability and total post‐fire seedling abundance from a suite of biophysical correlates. Finally, we reconstructed recent trends in post‐fire recovery and projected future dynamics using three general circulation models (GCMs) under moderate and extreme CO2emission scenarios.


    Though growing season (April–September) precipitation during the recent period (1981–2015) was positively associated with suitability for post‐fire tree seedling establishment, future (2021–2099) trends in precipitation were widely variable among GCMs, leading to mixed projections of future establishment suitability. In contrast, climatic water deficit (CWD), which is indicative of warm, dry conditions, was negatively associated with post‐fire seedling abundance during the recent period and was projected to increase throughout the southern Rocky Mountains in the future. Our findings suggest that future increases in CWD and an increased frequency of extreme drought years will substantially reduce post‐fire seedling densities.

    Main conclusions

    This study highlights the key roles of warming and drying in declining forest resilience to wildfire. Moisture stress, driven by macroclimate and topographic setting, will interact with wildfire activity to shape future vegetation patterns throughout the southern Rocky Mountains, USA.

    more » « less
  6. Abstract

    Catchment hydrometeorology and the organization of shallow subsurface flow are key drivers of active contributing areas and streamflow generation. However, understanding how the climatic water balance and complex topography contribute to these processes from hillslope to catchment scales remains difficult. We compared time series of vapor pressure deficits and soil moisture to the climatic water balance and topographic variables across six zero‐order catchments in the Lubrecht Experimental Forest (Montana, USA). We then evaluated how local hydrometeorology (volumetric water content and atmospheric vapor pressure deficit) affected the spatial occurrence of shallow subsurface flow. Generalized linear mixed model analysis revealed significant, temporally stable (monthly and seasonal average) patterns of hydrometeorology that can be predicted by the topographic wetness index and the dynamic climatic water deficit (CWD = potential evapotranspiration − actual evapotranspiration). Intracatchment patterns were significantly correlated to the topographic wetness index, while intercatchment patterns were correlated to spatiotemporal variance in the CWD during each time period. Spatial patterns of shallow subsurface flow were related to the hydrometeorological conditions of the site. We observed persistent shallow subsurface flow in convergent hillslope positions, except when a catchment was positioned in locations with high CWDs (low elevations and southerly aspects). Alternatively, we observed persistent subsurface flow across all hillslope positions (even 70‐m upslope from the hollow) when catchments were positioned in locations with especially low CWDs (northerly aspects and high elevations). These results highlight the importance of considering the superposition of the catchment‐scale climatic water balance and hillslope‐scale topography when characterizing hydrometeorology and shallow subsurface flow dynamics.

    more » « less