skip to main content


Search for: All records

Creators/Authors contains: "Holekamp, Kay E."

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    Environment structure often shapes social interactions. Spatial attractors that draw multiple individuals may play a particularly important role in dispersed groups, where individuals must first encounter one another to interact. We use GPS data recorded simultaneously from five spotted hyenas (Crocuta crocuta) within a single clan to investigate how communal dens and daily ranging patterns shape fission-fusion dynamics (subgroup splits and merges). We introduce a species-general framework for identifying and characterizing dyadic fission-fusion events and describe a taxonomy of ten possible configurations of these events. Applying this framework to the hyena data illuminates the spatiotemporal structure of social interactions within hyenas’ daily routines. The most common types of fission-fusion events involve close approaches between individuals, do not involve co-travel together, and occur at the communal den. Comparison to permutation-based reference models suggests that den usage structures broad-scale patterns of social encounters, but that other factors influence how those encounters unfold. We discuss the dual role of communal dens in hyenas as physical and social resources, and suggest that dens are an example of a general “social piggybacking” process whereby environmental attractors take on social importance as reliable places to encounter conspecifics, causing social and spatial processes to become fundamentally intertwined.

     
    more » « less
    Free, publicly-accessible full text available June 1, 2025
  2. Abstract

    Much historic work has focused on establishing geographical and ecological rules that broadly explain patterns in size variation. We examined geographic variation in Spotted Hyena skull size using geometric morphometrics and spatial statistics. We quantified size variation and sexual size dimorphism of the skull, and evaluated the influence of temperature, precipitation, land cover type, and population density on skull size. We found that female spotted hyenas are slightly larger on average than males. Our analysis of regional differences did not indicate geographic variation in sexual size dimorphism. Skull size of Spotted Hyenas varies with geography but does not adhere to Bergmann’s Rule. The smallest individuals of both sexes occur between −5.00° and 10.00° latitude and east of 28.50° longitude, with larger individuals being found elsewhere. Although Spotted Hyena skull size co-varies in some views with such variables as habitat type and climate indicators, skull size in this species most strongly co-varies with population density. The highest population densities are associated with the smallest skull size, possibly reflecting a relationship between high population density and access to resources. These results suggest that geographic variation in Spotted Hyena skull size is better explained by the energetic equivalence rule than Bergmann’s Rule.

     
    more » « less
  3. Collective action problems arise when cooperating individuals suffer costs of cooperation, while the benefits of cooperation are received by both cooperators and defectors. We address this problem using data from spotted hyenas fighting with lions. Lions are much larger and kill many hyenas, so these fights require cooperative mobbing by hyenas for them to succeed. We identify factors that predict when hyena groups engage in cooperative fights with lions, which individuals choose to participate and how the benefits of victory are distributed among cooperators and non-cooperators. We find that cooperative mobbing is better predicted by lower costs (no male lions, more hyenas) than higher benefits (need for food). Individual participation is facilitated by social factors, both over the long term (close kin, social bond strength) and the short term (greeting interactions prior to cooperation). Finally, we find some direct benefits of participation: after cooperation, participants were more likely to feed at contested carcasses than non-participants. Overall, these results are consistent with the hypothesis that, when animals face dangerous cooperative dilemmas, selection favours flexible strategies that are sensitive to dynamic factors emerging over multiple time scales.

     
    more » « less
  4. Animal activity patterns are highly variable and influenced by internal and external factors, including social processes. Quantifying activity patterns in natural settings can be challenging, as it is difficult to monitor animals over long time periods. Here, we developed and validated a machine-learning-based classifier to identify behavioural states from accelerometer data of wild spotted hyenas(Crocuta crocuta), social carnivores that live in large fission–fusion societies. By combining this classifier with continuous collar-based accelerometer data from five hyenas, we generated a complete record of activity patterns over more than one month. We used these continuous behavioural sequences to investigate how past activity, individual idiosyncrasies, and social synchronization influence hyena activity patterns. We found that hyenas exhibit characteristic crepuscular-nocturnal daily activity patterns. Time spent active was independent of activity level on previous days, suggesting that hyenas do not show activity compensation. We also found limited evidence for an effect of individual identity on activity, and showed that pairs of hyenas who synchronized their activity patterns must have spent more time together. This study sheds light on the patterns and drivers of activity in spotted hyena societies, and also provides a useful tool for quantifying behavioural sequences from accelerometer data.

     
    more » « less
  5. Introduction Dominance relationships in which females dominate males are rare among mammals. Mechanistic hypotheses explaining the occurrence of female dominance suggest that females dominate males because (1) they are intrinsically more aggressive or less submissive than males, and/or (2) they have access to more social support than males. Methods Here, we examine the determinants of female dominance across ontogenetic development in spotted hyenas ( Crocuta crocuta ) using 30 years of detailed behavioral observations from the Mara Hyena Project to evaluate these two hypotheses. Results Among adult hyenas, we find that females spontaneously aggress at higher rates than males, whereas males spontaneously submit at higher rates than females. Once an aggressive interaction has been initiated, adult females are more likely than immigrant males to elicit submission from members of the opposite sex, and both adult natal and immigrant males are more likely than adult females to offer submission in response to an aggressive act. We also find that adult male aggressors are more likely to receive social support than are adult female aggressors, and that both adult natal and immigrant males are 2–3 times more likely to receive support when attacking a female than when attacking another male. Across all age classes, females are more likely than males to be targets of aggressive acts that occur with support. Further, receiving social support does slightly help immigrant males elicit submission from adult females compared to immigrant males acting alone, and it also helps females elicit submission from other females. However, adult females can dominate immigrant males with or without support far more often than immigrant males can dominate females, even when the immigrants are supported against females. Discussion Overall, we find evidence for both mechanisms hypothesized to mediate female dominance in this species: (1) male and female hyenas clearly differ in their aggressive and submissive tendencies, and (2) realized social support plays an important role in shaping dominance relationships within a clan. Nevertheless, our results suggest that social support alone cannot explain sex-biased dominance in spotted hyenas. Although realized social support can certainly influence fight outcomes among females, adult females can easily dominate immigrant males without any support at all. 
    more » « less
  6. In ecology and evolutionary biology (EEB), the study of developmental plasticity seeks to understand ontogenetic processes underlying the phenotypes upon which natural selection acts. A central challenge to this inquiry is ascertaining a causal effect of the exposure on the manifestation of later-life phenotype due to the time elapsed between the two events. The exposure is a potential cause of the outcome—i.e. an environmental stimulus or experience. The later phenotype might be a behaviour, physiological condition, morphology or life-history trait. The latency period between the exposure and outcome complicates causal inference due to the inevitable occurrence of additional events that may affect the relationship of interest. Here, we describe six distinct but non-mutually exclusive conceptual models from the field of lifecourse epidemiology and discuss their applications to EEB research. The models include Critical Period with No Later Modifiers, Critical Period with Later Modifiers, Accumulation of Risk with Independent Risk Exposures, Accumulation of Risk with Risk Clustering, Accumulation of Risk with Chains of Risk and Accumulation of Risk with Trigger Effect. These models, which have been widely used to test causal hypotheses regarding the early origins of adult-onset disease in humans, are directly relevant to research on developmental plasticity in EEB. 
    more » « less
  7. In animal societies, identity signals are common, mediate interactions within groups, and allow individuals to discriminate group-mates from out-group competitors. However, individual recognition becomes increasingly challenging as group size increases and as signals must be transmitted over greater distances. Group vocal signatures may evolve when successful in-group/out-group distinctions are at the crux of fitness-relevant decisions, but group signatures alone are insufficient when differentiated within-group relationships are important for decision-making. Spotted hyenas are social carnivores that live in stable clans of less than 125 individuals composed of multiple unrelated matrilines. Clan members cooperate to defend resources and communal territories from neighbouring clans and other mega carnivores; this collective defence is mediated by long-range (up to 5 km range) recruitment vocalizations, called whoops. Here, we use machine learning to determine that spotted hyena whoops contain individual but not group signatures, and that fundamental frequency features which propagate well are critical for individual discrimination. For effective clan-level cooperation, hyenas face the cognitive challenge of remembering and recognizing individual voices at long range. We show that serial redundancy in whoop bouts increases individual classification accuracy and thus extended call bouts used by hyenas probably evolved to overcome the challenges of communicating individual identity at long distance. 
    more » « less