skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Hollas, Aaron"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Hagfeldt, Anders (Ed.)
    TEMPO has been widely explored as one of the most promising catholyte redox scaffolds in aqueous redox flow batteries, but the often-observed performance degradation raises concern with respect to its chemical instability. In this work, we demonstrate that the charged TEMPO species (i.e., TEMPO+) lack sufficient stability and also determine the major decomposition pathways. The decay products of TEMPO+ are experimentally analyzed using combined tools including nuclear magnetic resonance and mass spectroscopy. Reductive conversion to 2,2,6,6-tetramethylpiperidine (TEMPH) is commonly observed for a variety of 4-O-substituted TEMPO derivatives. The general detection of alkene and related carbonyl signals, in conjunction with the electrolyte acidification, reveals a deprotonation-initiated ring opening route that proceeds towards TEMPO decay. The protons on the β carbon are susceptible to chemical extraction by nucleophilic agents such as hydroxyl and the formed piperidine. This finding highlights the intrinsic structural factors for TEMPO degradation and will shed light on the potential stabilization strategies to afford long-cycling TEMPO-based flow batteries. 
    more » « less
    Free, publicly-accessible full text available January 1, 2027