skip to main content


Search for: All records

Creators/Authors contains: "Holmes, Richard T"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. In this study, we analyzed territory sizes of seven migratory songbirds occupying a 10-hectare plot in the Hubbard Brook Experimental Forest, New Hampshire, USA over a 52-year period (1969-2021). All species varied in abundance over the duration of the study, some dramatically. Changes in territory sizes were inversely related to changes in abundance within the study plot despite differences in habitat preference, supporting the ideal free distribution. Territory sizes varied two-fold within a year across species. Results contribute to understanding how variation in territory size relates to 1) how habitat use changes with bird abundance and 2) the evolution of territory size. This dataset includes data, R code, and spatial files supporting this study. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Associated datasets in the data catalog: Holmes, R.T., N.L. Rodenhouse, and M.T. Hallworth. 2022. Bird Abundances at the Hubbard Brook Experimental Forest (1969-present) and on three replicate plots (1986-2000) in the White Mountain National Forest ver 8. Environmental Data Initiative. https://doi.org/10.6073/pasta/6422a72893616ce9020086de5a5714cd (Accessed 2023-12-17). Zammarelli, M.B. and R.T. Holmes. 2023. Hubbard Brook Experimental Forest: 10-ha bird plot territory maps, 1969 - 2021 ver 1. Environmental Data Initiative. https://doi.org/10.6073/pasta/df93595ba8df60570d472f6e6f58839e (Accessed 2024-01-11). 
    more » « less
  2. Maps showing the estimated territorial boundaries of all bird species occupying the 10-ha bird plot in the Hubbard Brook Experimental Forest, 1969-2021. These data were used in estimating the abundance of bird populations during this period (e.g., Holmes and Sturges 1975, Holmes et al. 1986, Holmes and Sherry 1988, 2001, Holmes 2011). These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Papers associated with this dataset: Holmes, R. T., & Sturges, F. W. (1975). Bird Community Dynamics and Energetics in a Northern Hardwoods Ecosystem. Journal of Animal Ecology, 44(1), 175–200. https://doi.org/10.2307/3857 Sherry, T. W. (1979). Competitive interactions and adaptive strategies of American Redstarts and Least Flycatchers in a northern hardwoods forest. The Auk, 96(2), 265-283. Holmes, R. T., Bonney, R. E., & Pacala, S. W. (1979). Guild Structure of the Hubbard Brook Bird Community: A Multivariate Approach. Ecology, 60(3), 512–520. https://doi.org/10.2307/1936071 Holmes, R. T., Sherry, T. W., & Sturges, F. W. (1986). Bird Community Dynamics in a Temperate Deciduous Forest: Long-Term Trends at Hubbard Brook. Ecological Monographs, 56(3), 201–220. https://doi.org/10.2307/2937074 Holmes, R. T., & Robinson, S. K. (1988). Spatial patterns, foraging tactics, and diets of ground-foraging birds in a northern hardwoods forest. The Wilson Bulletin, 377-394. Holmes, R. T., & Sherry, T. W. (1988). Assessing population trends of New Hampshire forest birds: local vs. regional patterns. The Auk, 105(4), 756-768. 10.2307/4087390 Holmes, R. T., & Sherry, T. W. (2001). Thirty-year bird population trends in an unfragmented temperate deciduous forest: importance of habitat change. The Auk, 118(3), 589-609. https://doi.org/10.1093/auk/118.3.589 Holmes, R. T. (2011). Avian population and community processes in forest ecosystems: Long-term research in the Hubbard Brook Experimental Forest. Forest Ecology and Management, 262(1), 20-32. https://doi.org/10.1016/j.foreco.2010.06.021 Associated datasets in the data catalog: Holmes, R.T., N.L. Rodenhouse, and M.T. Hallworth. 2022. Bird Abundances at the Hubbard Brook Experimental Forest (1969-present) and on three replicate plots (1986-2000) in the White Mountain National Forest ver 8. Environmental Data Initiative. https://doi.org/10.6073/pasta/6422a72893616ce9020086de5a5714cd (Accessed 2023-12-17). 
    more » « less
  3. Abstract

    Resilience is the ability of ecosystems to maintain function while experiencing perturbation. Globally, forests are experiencing disturbances of unprecedented quantity, type, and magnitude that may diminish resilience. Early warning signals are statistical properties of data whose increase over time may provide insights into decreasing resilience, but there have been few applications to forests. We quantified four early warning signals (standard deviation, lag-1 autocorrelation, skewness, and kurtosis) across detrended time series of multiple ecosystem state variables at the Hubbard Brook Experimental Forest, New Hampshire, USA and analyzed how these signals have changed over time. Variables were collected over periods from 25 to 55 years from both experimentally manipulated and reference areas and were aggregated to annual timesteps for analysis. Long-term (>50 year) increases in early warning signals of stream calcium, a key biogeochemical variable at the site, illustrated declining resilience after decades of acid deposition, but only in watersheds that had previously been harvested. Trends in early warning signals of stream nitrate, a critical nutrient and water pollutant, likewise exhibited symptoms of declining resilience but in all watersheds. Temporal trends in early warning signals of some of groups of trees, insects, and birds also indicated changing resilience, but this pattern differed among, and even within, groups. Overall, ∼60% of early warning signals analyzed indicated decreasing resilience. Most of these signals occurred in skewness and kurtosis, suggesting ‘flickering’ behavior that aligns with emerging evidence of the forest transitioning into an oligotrophic condition. The other ∼40% of early warning signals indicated increasing or unchanging resilience. Interpretation of early warning signals in the context of system specific knowledge is therefore essential. They can be useful indicators for some key ecosystem variables; however, uncertainties in other variables highlight the need for further development of these tools in well-studied, long-term research sites.

     
    more » « less
  4. Bird abundances have been determined from timed censuses, territory maps and nest locations at the Hubbard Brook Experimental Forest from 1969 to the present. This data set includes counts of the number of adult birds (males and females) per 10 ha at HBEF (1969 - present) and on three additional plots within the White Mountain National Forest (1986 - 2000). These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  5. Numbers and lengths of Lepidoptera larvae (caterpillars, all species) were censused on shrub level foliage at biweekly intervals from late May/early June through late July/early August each year. Measurements were conducted on the Main bird plot in the Hubbard Brook Experimental Forest and on three additional plots within the White Mountain National Forest from 1986-1997. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  6. This dataset provides body measurements and encounter histories for black-throated blue warblers. Birds were captured in mist nets, given unique combinations of colored leg bands and a numbered, aluminium USGS leg band, and aged as either yearlings or older breeders based on plumage characters. Standard body measurements were taken, following Pyle 1997 (Pyle, P. 1997. Identification guide to North American birds. Slate Creek Press, Bolinas, CA). All birds were released unharmed after banding and measurements were completed. Capture histories were generated from resightings of banded individuals on three gridded study plots at the HBEF: low elevation (250-350 m; 85 ha), middle elevation (450-600 m; 65 ha), and high elevation (750-850 m; 35 ha). See Rodenhouse et al. 2003 for plot details. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. Data have been described and published in: Rodenhouse, N. L., Sillett, T. S., Doran, P. J., & Holmes, R. T. (2003). Multiple density-dependence mechanisms regulate a migratory bird population during the breeding season. Proceedings. Biological sciences, 270(1529), 2105–2110. https://doi.org/10.1098/rspb.2003.2438 Sillett, T. S., & Holmes, R. T. (2002). Variation in Survivorship of a Migratory Songbird throughout Its Annual Cycle. Journal of Animal Ecology, 71(2), 296–308. http://www.jstor.org/stable/2693447 
    more » « less
  7. This dataset provides counts of potential nest predators recorded on surveys conducted in black-throated blue warbler territories at the Hubbard Brook Experimental Forest. Surveys occurred on three gridded study plots at the HBEF: low elevation (250-350 m; 85 ha), middle elevation (450-600 m; 65 ha), and high elevation (750-850 m; 35 ha). See Rodenhouse et al. 2003 for plot details. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  8. We collected 410 10-minute sound recordings of birds in and near the Hubbard Brook Experimental Forest in New Hampshire. Recordings, which encompassed most of the bird breeding season in each of two years, included 130,776 vocalizations from 46 taxa. In the associated publication, we report species lists, rarefaction curves, and vocalization descriptions. We also provide analyses of habitat associations, phenology, and spatial patterning in vocalization activity. These data were gathered as part of the Hubbard Brook Ecosystem Study (HBES). The HBES is a collaborative effort at the Hubbard Brook Experimental Forest, which is operated and maintained by the USDA Forest Service, Northern Research Station. 
    more » « less
  9. Abstract

    Understanding the demographic drivers of range contractions is important for predicting species' responses to climate change; however, few studies have examined the effects of climate change on survival and recruitment across species' ranges. We show that climate change can drive trailing edge range contractions through the effects on apparent survival, and potentially recruitment, in a migratory songbird. We assessed the demographic drivers of trailing edge range contractions using a long‐term demography dataset for the black‐throated blue warbler (Setophaga caerulescens) collected across elevational climate gradients at the trailing edge and core of the breeding range. We used a Bayesian hierarchical model to estimate the effect of climate change on apparent survival and recruitment and to forecast population viability at study plots through 2040. The trailing edge population at the low‐elevation plot became locally extinct by 2017. The local population at the mid‐elevation plot at the trailing edge gradually declined and is predicted to become extirpated by 2040. Population declines were associated with warming temperatures at the mid‐elevation plot, although results were more equivocal at the low‐elevation plot where we had fewer years of data. Population density was stable or increasing at the range core, although warming temperatures are predicted to cause population declines by 2040 at the low‐elevation plot. This result suggests that even populations within the geographic core of the range are vulnerable to climate change. The demographic drivers of local population declines varied between study plots, but warming temperatures were frequently associated with declining rates of population growth and apparent survival. Declining apparent survival in our study system is likely to be associated with increased adult emigration away from poor‐quality habitats. Our results suggest that demographic responses to warming temperatures are complex and dependent on local conditions and geographic range position, but spatial variation in population declines is consistent with the climate‐mediated range shift hypothesis. Local populations of black‐throated blue warblers near the warm‐edge range boundary at low latitudes and low elevations are likely to be the most vulnerable to climate change, potentially leading to local extirpation and range contractions.

     
    more » « less