skip to main content


Search for: All records

Creators/Authors contains: "Holoubek, John"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. All-climate temperature operation capability and increased energy density have been recognized as two crucial targets, but they are rarely achieved together in rechargeable lithium (Li) batteries. Herein, we demonstrate an electrolyte system by using monodentate dibutyl ether with both low melting and high boiling points as the sole solvent. Its weak solvation endows an aggregate solvation structure and low solubility toward polysulfide species in a relatively low electrolyte concentration (2 mol L −1 ). These features were found to be vital in avoiding dendrite growth and enabling Li metal Coulombic efficiencies of 99.0%, 98.2%, and 98.7% at 23 °C, −40 °C, and 50 °C, respectively. Pouch cells employing thin Li metal (50 μm) and high-loading sulfurized polyacrylonitrile (3.3 mAh cm −2 ) cathodes (negative-to-positive capacity ratio = 2) output 87.5% and 115.9% of their room temperature capacity at −40 °C and 50 °C, respectively. This work provides solvent-based design criteria for a wide temperature range Li-sulfur pouch cells. 
    more » « less
  2. Lithium metal batteries are capable of pushing cell energy densities beyond what is currently achievable with commercial Li-ion cells and are the ideal technology for supplying power to electronic devices at low temperatures (≤−20 °C). To minimize the thermal management requirements of these devices, batteries capable of both charging and discharging at these temperatures are highly desirable. Here, we report >4 V Li metal full cell batteries (N/P = 2) capable of hundreds of stable cycles down to −40 °C, unambiguously enabled by the introduction of cation/anion pairs in the electrolyte. Via controlled experimental and computational investigations in electrolytes employing 1,2-dimethoxyethane as the solvating solvent, we observed distinct performance transitions in low temperature electrochemical performance, coincident with a shift in the Li + binding environment. The performance advantages of heavily ion-paired electrolytes were found to apply to both the cathode and anode, providing Li metal Coulombic efficiencies of 98.9, 98.5, and 96.9% at −20, −40, and −60 °C, respectively, while improving the oxidative stability in support of >4 V cathodes. This work reveals a strong correlation between ion-pairing and low-temperature performance while providing a viable route to Li metal full batteries cycling under extreme conditions. 
    more » « less
  3. As lithium-ion batteries (LIBs) become vital energy source for daily life and industry applications, a large volume of spent LIBs will be produced after their lifespan. Recycling of LIBs has been considered as an effective closed-loop solution to mitigate both environmental and economic issues associated with spent LIBs. While reclaiming of transition metal elements from LIB cathodes has been well established, recycling of graphite anodes has been overlooked. Here, we show an effect upcycling method involving both healing and doping to directly regenerate spent graphite anodes. Specifically, using boric acid pretreatment and short annealing, our regeneration process not only heals the composition/structure defects of degraded graphite but also creates functional boron-doping on the surface of graphite particles, providing high electrochemical activity and excellent cycling stability. The efficient direct regeneration of spent graphite by using low cost, non-volatile and non-caustic boric acid with low annealing temperature provides a more promising direction for green and sustainable recycling of spent LIB anodes.

     
    more » « less
  4. Abstract

    Confining molecules in the nanoscale environment can lead to dramatic changes of their physical and chemical properties, which opens possibilities for new applications. There is a growing interest in liquefied gas electrolytes for electrochemical devices operating at low temperatures due to their low melting point. However, their high vapor pressure still poses potential safety concerns for practical usages. Herein, we report facile capillary condensation of gas electrolyte by strong confinement in sub-nanometer pores of metal-organic framework (MOF). By designing MOF-polymer membranes (MPMs) that present dense and continuous micropore (~0.8 nm) networks, we show significant uptake of hydrofluorocarbon molecules in MOF pores at pressure lower than the bulk counterpart. This unique property enables lithium/fluorinated graphite batteries with MPM-based electrolytes to deliver a significantly higher capacity than those with commercial separator membranes (~500 mAh g−1vs. <0.03 mAh g−1) at −40 °C under reduced pressure of the electrolyte.

     
    more » « less
  5. Abstract

    A low‐carbon future demands more affordable batteries utilizing abundant elements with sustainable end‐of‐life battery management. Despite the economic and environmental advantages of Li‐MnO2batteries, their application so far has been largely constrained to primary batteries. Here, we demonstrate that one of the major limiting factors preventing the stable cycling of Li‐MnO2batteries, Mn dissolution, can be effectively mitigated by employing a common ether electrolyte, 1 mol/L lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) in 1,3‐dioxane (DOL)/1,2‐dimethoxyethane (DME). We discover that the suppression of this dissolution enables highly reversible cycling of the MnO2cathode regardless of the synthesized phase and morphology. Moreover, we find that both the LiPF6salt and carbonate solvents present in conventional electrolytes are responsible for previous cycling challenges. The ether electrolyte, paired with MnO2cathodes is able to demonstrate stable cycling performance at various rates, even at elevated temperature such as 60°C. Our discovery not only represents a defining step in Li‐MnO2batteries with extended life but provides design criteria of electrolytes for vast manganese‐based cathodes in rechargeable batteries.

     
    more » « less
  6. Abstract

    Achieving increased energy density under extreme operating conditions remains a major challenge in rechargeable batteries. Herein, we demonstrate an all‐fluorinated ester‐based electrolyte comprising partially fluorinated carboxylate and carbonate esters. This electrolyte exhibits temperature‐resilient physicochemical properties and moderate ion‐paired solvation, leading to a half solvent‐separated and half contact‐ion pair in a sole electrolyte. As a result, facile desolvation and preferential reduction of anions/fluorinated co‐solvents for LiF‐dominated interphases are achieved without compromising ionic conductivity (>1 mS cm−1even at −40 °C). These advantageous features were found to apply to both lithium metal and sulfur‐based electrodes even under extreme operating conditions, allowing stable cycling of Li || sulfurized polyacrylonitrile (SPAN) full cells with high SPAN loading (>3.5 mAh cm−2) and thin Li anode (50 μm) at −40, 23 and 50 °C. This work offers a promising path for designing temperature‐resilient electrolytes to support high energy density Li metal batteries operating in extreme conditions.

     
    more » « less
  7. Abstract

    Achieving increased energy density under extreme operating conditions remains a major challenge in rechargeable batteries. Herein, we demonstrate an all‐fluorinated ester‐based electrolyte comprising partially fluorinated carboxylate and carbonate esters. This electrolyte exhibits temperature‐resilient physicochemical properties and moderate ion‐paired solvation, leading to a half solvent‐separated and half contact‐ion pair in a sole electrolyte. As a result, facile desolvation and preferential reduction of anions/fluorinated co‐solvents for LiF‐dominated interphases are achieved without compromising ionic conductivity (>1 mS cm−1even at −40 °C). These advantageous features were found to apply to both lithium metal and sulfur‐based electrodes even under extreme operating conditions, allowing stable cycling of Li || sulfurized polyacrylonitrile (SPAN) full cells with high SPAN loading (>3.5 mAh cm−2) and thin Li anode (50 μm) at −40, 23 and 50 °C. This work offers a promising path for designing temperature‐resilient electrolytes to support high energy density Li metal batteries operating in extreme conditions.

     
    more » « less
  8. Abstract

    The dry process is a promising fabrication method for all‐solid‐state batteries (ASSBs) to eliminate energy‐intense drying and solvent recovery steps and to prevent degradation of solid‐state electrolytes (SSEs) in the wet process. While previous studies have utilized the dry process to enable thin SSE films, systematic studies on their fabrication, physical and electrochemical properties, and electrochemical performance are unprecedented. Here, different fabrication parameters are studied to understand polytetrafluoroethylene (PTFE) binder fibrillation and its impact on the physio‐electrochemical properties of SSE films, as well as the cycling stability of ASSBs resulting from such SSEs. A counter‐balancing relation between the physio‐electrochemical properties and cycling stability is observed, which is due to the propagating behavior of PTFE reduction (both chemically and electrochemically) through the fibrillation network, resulting in cell failure from current leakage and ion blockage. By controlling PTFE fibrillation, a bilayer configuration of SSE film to enable physio‐electrochemically durable SSE film for both good cycling stability and charge storage capability of ASSBs is demonstrated.

     
    more » « less