Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract Contemporary crustal uplift and relative sea level (RSL) change in Greenland is caused by the response of the solid Earth to ongoing and historical ice mass change. Glacial isostatic adjustment (GIA) models, which seek to match patterns of land surface displacement and RSL change, typically employ a linear Maxwell viscoelastic model for the Earth's mantle. In Greenland, however, upper mantle viscosities inferred from ice load changes and other geophysical phenomena occurring over a range of timescales vary by up to two orders of magnitude. Here, we use full‐spectrum rheological models to examine the influence of transient deformation within the Greenland upper mantle, which may account for these differing viscosity estimates. We use observations of shear wave velocity combined with constitutive rheological models to self‐consistently calculate mechanical properties including the apparent upper mantle viscosity and lithosphere thickness across a broad spectrum of frequencies. We find that the contribution of transient behavior is most significant over loading timescales of 102–103 years, which corresponds to the timeframe of ice mass loss over recent centuries. Predicted apparent lithosphere thicknesses are also in good agreement with inferences made across seismic, GIA, and flexural timescales. Our results indicate that full‐spectrum constitutive models that more fully capture broadband mantle relaxation provide a means of reconciling seemingly contradictory estimates of Greenland's upper mantle viscosity and lithosphere thickness made from observations spanning a range of timescales.
-
null (Ed.)Abstract Sonification of time series data in natural science has gained increasing attention as an observational and educational tool. Sound is a direct representation for oscillatory data, but for most phenomena, less direct representational methods are necessary. Coupled with animated visual representations of the same data, the visual and auditory systems can work together to identify complex patterns quickly. We developed a multivariate data sonification and visualization approach to explore and convey patterns in a complex dynamic system, Lone Star Geyser in Yellowstone National Park. This geyser has erupted regularly for at least 100 years, with remarkable consistency in the interval between eruptions (three hours) but with significant variations in smaller scale patterns between each eruptive cycle. From a scientific standpoint, the ability to hear structures evolving over time in multiparameter data permits the rapid identification of relationships that might otherwise be overlooked or require significant processing to find. The human auditory system is adept at physical interpretation of call-and-response or causality in polyphonic sounds. Methods developed here for oscillatory and nonstationary data have great potential as scientific observational and educational tools, for data-driven composition with scientific and artistic intent, and towards the development of machine learning tools for pattern identification in complex data.more » « less
-
Toward a Self‐Consistent Characterization of Lithospheric Plates Using Full‐Spectrum Viscoelasticity
Determining the thickness of the lithosphere in any given setting combines uncertainty in both the observational method and laboratory‐derived understanding of mantle rheology. The many observational and modeling criteria across geophysical subfields for plate thickness lead to significant differences in plate thickness estimates depending on the process of interest, be it seismic wave propagation or relaxation in response to changes in loads—from earthquakes, ice sheets to volcanoes—or convection. This paper proposes a framework in which to model and interpret upper mantle mechanical structure smoothly across the full spectrum of geophysical timescales. We integrate viscous, elastic, and linear anelastic constitutive models and calculate the mechanical response from convective to seismic wave timescales (i.e., 0 to infinite frequency or, in practice,
10−15 to 1 Hz). We apply these calculations to 1‐D thermal structures and determine the normalized complex viscosity, a quantity that shows clearly the role of transient creep in weakening rock relative to the associated Maxwell rheology. Using various criteria for the lithosphere‐asthenosphere boundary, we show that the apparent plate thickness will be thicker at higher frequencies than at lower frequencies. Additional calculations for nonlinear Maxwell behavior (dislocation mechanisms) demonstrate significant changes in the apparent plate structure, decreasing the long‐term plate thickness, consistent with observations. Other effects such as dislocation damping (associated with a steady‐state dislocation structure), melt, water, major element composition, and grain size are not included here but, when incorporated into this framework, will significantly change the full‐spectrum plate thickness predictions. -
Abstract We develop a conceptual/quantitative framework whereby measurements of Earth's viscoelasticity may be assessed across the broad range of geophysical processes, spanning seismic wave propagation, postseismic relaxation, glacial isostatic adjustment, and mantle convection. Doing so requires overcoming three challenges: (A) separating spatial variations from intrinsic frequency dependence in mechanical properties; (B) reconciling different conceptual and constitutive viscoelastic models used to interpret observations at different frequencies; and (C) improving understanding of linear and nonlinear transient deformation mechanisms and their extrapolation from laboratory to earth conditions. We focus on (B), first demonstrating how different mechanical models lead to incompatible viscosity estimates from observations. We propose the determination of the “complex viscosity”—a frequency‐dependent parameter complementary to other measures of dissipation (including frequency‐dependent moduli and attenuation)—from such observations to reveal a single underlying broadband mechanical model. The complex viscosity illuminates transient creep in the vicinity of the Maxwell time, where most ambiguity lies.