Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Deep convection in the Asian summer monsoon is a significant transport process for lifting pollutants from the planetary boundary layer to the tropopause level. This process enables efficient injection into the stratosphere of reactive species such as chlorinated very short-lived substances (Cl-VSLSs) that deplete ozone. Past studies of convective transport associated with the Asian summer monsoon have focused mostly on the south Asian summer monsoon. Airborne observations reported in this work identify the East Asian summer monsoon convection as an effective transport pathway that carried record-breaking levels of ozone-depleting Cl-VSLSs (mean organic chlorine from these VSLSs ~500 ppt) to the base of the stratosphere. These unique observations show total organic chlorine from VSLSs in the lower stratosphere over the Asian monsoon tropopause to be more than twice that previously reported over the tropical tropopause. Considering the recently observed increase in Cl-VSLS emissions and the ongoing strengthening of the East Asian summer monsoon under global warming, our results highlight that a reevaluation of the contribution of Cl-VSLS injection via the Asian monsoon to the total stratospheric chlorine budget is warranted.more » « less
-
Abstract The Asian Summer Monsoon (ASM) convection transports aerosols and their precursors from the boundary layer to the upper troposphere and lower stratosphere (UTLS). This process forms an annually recurring aerosol layer near the tropopause. Recent observations have revealed a distinct property of the aerosol layer over the ASM region, it is nitrate‐rich. We present a newly implemented aerosol formation algorithm that enhances the representation of nitrate aerosol in the Community Aerosol and Radiation Model for Atmospheres (CARMA) coupled with the Community Earth System Model (CESM). The simulated aerosol chemical composition, as well as vertical distributions of aerosol size and mass, are evaluated using in situ and remote sensing observations. The simulated concentrations (ammonium, nitrate, and sulfate) and size distributions are generally within the error bars of data. We find nitrate, organics, and sulfate contribute significantly to the UTLS aerosol concentration between 15°–45°N and 0°–160°E. The two key formation mechanisms of nitrate‐containing aerosols in the ATAL are ammonium neutralization to form ammonium nitrate in regions where convection is active, and condensation of nitric acid in regions of cold temperature. Furthermore, including nitrate formation in the model doubles the surface area density in the tropical tropopause region between 15°–45°N and 0°–160°E, which alters the chlorine partitioning and subsequently impacts the rate of ozone depletion.more » « less
-
Abstract Chemistry Climate Models (CCMs) are essential tools for characterizing and predicting the role of atmospheric composition and chemistry in Earth's climate system. This study demonstrates the use of airborne in situ observations to diagnose the representation of chemical composition and transport by CCMs. Process‐based diagnostics using dynamical and chemical coordinates are presented which minimize the spatial and temporal sampling differences between airborne in situ measurements and CCM grid points. The chosen process is the chemical impact of the Asian summer monsoon (ASM), where deep convection serves as a rapid transport pathway for surface emissions to reach the upper troposphere and lower stratosphere (UTLS). We examine two CCM configurations for their representation of the ASM UTLS using a set of airborne observations from south Asia. The diagnostics reveal good model performance at representing tropospheric tracer distribution throughout the troposphere and lower stratosphere, and excellent representation of chemical aging in the lower stratosphere when chemical loss is dominated by photolysis. Identified model limitations include the use of zonally averaged mole fraction boundary conditions for species with sufficiently short tropospheric lifetimes, which may obscure enhanced regional emissions sources. Overall, the diagnostics underscore the skill of current‐generation models at representing pollution transport from the boundary layer to the stratosphere via the ASM mechanism, and demonstrate the strength of airborne in situ observations toward characterizing this representation.more » « less
-
Abstract The Asian summer monsoon (ASM) as a chemical transport system is investigated using a suite of models in preparation for an airborne field campaign over the Western Pacific. Results show that the dynamical process of anticyclone eddy shedding in the upper troposphere rapidly transports convectively uplifted Asian boundary layer air masses to the upper troposphere and lower stratosphere over the Western Pacific. The models show that the transported air masses contain significantly enhanced aerosol loading and a complex chemical mixture of trace gases that are relevant to ozone chemistry. The chemical forecast models consistently predict the occurrence of the shedding events, but the predicted concentrations of transported trace gases and aerosols often differ between models. The airborne measurements to be obtained in the field campaign are expected to help reduce the model uncertainties. Furthermore, the large‐scale seasonal chemical structure of the monsoon system is obtained from modeled carbon monoxide, a tracer of the convective transport of pollutants, which provides a new perspective of the ASM circulation, complementing the dynamical characterization of the monsoon.more » « less
An official website of the United States government
