We measure the clustering of Lyman Alpha Emitting galaxies (LAEs) selected from the One-hundred-square-degree DECam Imaging in Narrowbands (ODIN) survey, with spectroscopic follow-up from Dark Energy Spectroscopic Instrument (DESI). We use DESI spectroscopy to optimize our selection and to constrain the interloper fraction and redshift distribution of our narrow-band selected sources. We select samples of 4000 LAEs at
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Abstract z = 2.45 and 3.1 in 9 sq.deg. centered on the COSMOS field with median Lyα fluxes of ≈ 10-16erg s-1cm-2. Covariances and cosmological inferences are obtained from a series of mock catalogs built upon high-resolution N-body simulations that match the footprint, number density, redshift distribution and observed clustering of the sample. We find that both samples have a correlation length ofr 0= 3.0 ± 0.2 h-1Mpc. Within our fiducial cosmology these correspond to 3D number densities of ≈ 10-3h3Mpc-3and, from our mock catalogs, biases of 1.7 and 2.0 atz = 2.45 and 3.1, respectively. We discuss the implications of these measurements for the use of LAEs as large-scale structure tracers for high-redshift cosmology.Free, publicly-accessible full text available August 1, 2025 -
ABSTRACT Current and future Type Ia Supernova (SN Ia) surveys will need to adopt new approaches to classifying SNe and obtaining their redshifts without spectra if they wish to reach their full potential. We present here a novel approach that uses only photometry to identify SNe Ia in the 5-yr Dark Energy Survey (DES) data set using the SuperNNova classifier. Our approach, which does not rely on any information from the SN host-galaxy, recovers SNe Ia that might otherwise be lost due to a lack of an identifiable host. We select $2{,}298$ high-quality SNe Ia from the DES 5-yr data set an almost complete sample of detected SNe Ia. More than 700 of these have no spectroscopic host redshift and are potentially new SNIa compared to the DES-SN5YR cosmology analysis. To analyse these SNe Ia, we derive their redshifts and properties using only their light curves with a modified version of the SALT2 light-curve fitter. Compared to other DES SN Ia samples with spectroscopic redshifts, our new sample has in average higher redshift, bluer and broader light curves, and fainter host-galaxies. Future surveys such as LSST will also face an additional challenge, the scarcity of spectroscopic resources for follow-up. When applying our novel method to DES data, we reduce the need for follow-up by a factor of four and three for host-galaxy and live SN, respectively, compared to earlier approaches. Our novel method thus leads to better optimization of spectroscopic resources for follow-up.
-
ABSTRACT We use Dark Energy Survey Year 3 (DES Y3) clusters with archival XMM–Newton and Chandra X-ray data to assess the centring performance of the redMaPPer cluster finder and to measure key richness observable scaling relations. We find that 10–20 per cent of redMaPPer clusters are miscentred, both when comparing to the X-ray peak position and to the visually identified central cluster galaxy. We find no significant difference in miscentring in bins of low versus high richness or redshift. The dominant reasons for miscentring include masked or missing data and the presence of other bright galaxies in the cluster. For half of the miscentred clusters, the correct central was one of the possible centrals identified by redMaPPer, while for ∼40 per cent of miscentred clusters, the correct central is not a redMaPPer member mostly due to masking. Additionally, we fit scaling relations of X-ray temperature and luminosity with richness. We find a TX–λ scatter of $0.21\pm 0.01$. While the scatter in TX–λ is consistent in redshift bins, we find modestly different slopes, with high-redshift clusters displaying a somewhat shallower relation. Splitting based on richness, we find a marginally larger scatter for our lowest richness bin, 20 < λ < 40. We note that the robustness of the scaling relations at lower richnesses is limited by the unknown selection function, but at λ > 75, we detect nearly all of the clusters falling within existing X-ray pointings. The X-ray properties of detected, serendipitous clusters are generally consistent with those of targeted clusters.
-
ABSTRACT We present a precise measurement of cosmological time dilation using the light curves of 1504 Type Ia supernovae from the Dark Energy Survey spanning a redshift range $0.1\lesssim z\lesssim 1.2$. We find that the width of supernova light curves is proportional to $(1+z)$, as expected for time dilation due to the expansion of the Universe. Assuming Type Ia supernovae light curves are emitted with a consistent duration $\Delta t_{\rm em}$, and parametrizing the observed duration as $\Delta t_{\rm obs}=\Delta t_{\rm em}(1+z)^b$, we fit for the form of time dilation using two methods. First, we find that a power of $b \approx 1$ minimizes the flux scatter in stacked subsamples of light curves across different redshifts. Secondly, we fit each target supernova to a stacked light curve (stacking all supernovae with observed bandpasses matching that of the target light curve) and find $b=1.003\pm 0.005$ (stat) $\pm \, 0.010$ (sys). Thanks to the large number of supernovae and large redshift-range of the sample, this analysis gives the most precise measurement of cosmological time dilation to date, ruling out any non-time-dilating cosmological models at very high significance.
-
ABSTRACT The full-shape correlations of the Lyman alpha (Ly α) forest contain a wealth of cosmological information through the Alcock–Paczyński effect. However, these measurements are challenging to model without robustly testing and verifying the theoretical framework used for analysing them. Here, we leverage the accuracy and volume of the N-body simulation suite AbacusSummit to generate high-resolution Ly α skewers and quasi-stellar object (QSO) catalogues. One of the main goals of our mocks is to aid in the full-shape Ly α analysis planned by the Dark Energy Spectroscopic Instrument (DESI) team. We provide optical depth skewers for six of the fiducial cosmology base-resolution simulations ($L_{\rm box} = 2\, h^{-1}\, {\rm Gpc}$, N = 69123) at z = 2.5. We adopt a simple recipe based on the Fluctuating Gunn–Peterson Approximation (FGPA) for constructing these skewers from the matter density in an N-body simulation and calibrate it against the 1D and 3D Ly α power spectra extracted from the hydrodynamical simulation IllustrisTNG (TNG; $L_{\rm box} = 205\, h^{-1}\, {\rm Mpc}$, N = 25003). As an important application, we study the non-linear broadening of the baryon acoustic oscillation (BAO) peak and show the cross-correlation between DESI-like QSOs and our Ly α forest skewers. We find differences on small scales between the Kaiser approximation prediction and our mock measurements of the Ly α × QSO cross-correlation, which would be important to account for in upcoming analyses. The AbacusSummit Ly α forest mocks open up the possibility for improved modelling of cross-correlations between Ly α and cosmic microwave background (CMB) lensing and Ly α and QSOs, and for forecasts of the 3-point Ly α correlation function. Our catalogues and skewers are publicly available on Globus via the National Energy Research Scientific Computing Center (NERSC) (full link under the section ‘Data Availability’).
-
Abstract We present a measurement of the Hubble Constant
H 0using the gravitational wave event GW190412, an asymmetric binary black hole merger detected by LIGO/Virgo, as a dark standard siren. This event does not have an electromagnetic counterpart, so we use the statistical standard siren method and marginalize over potential host galaxies from the Dark Energy Spectroscopic Instrument (DESI) survey. GW190412 is well-localized to 12 deg2(90% credible interval), so it is promising for a dark siren analysis. The dark siren value for km s−1 Mpc−1, with a posterior shape that is consistent with redshift overdensities. When combined with the bright standard siren measurement from GW170817 we recover km s−1 Mpc−1, consistent with both early and late-time Universe measurements ofH 0. This work represents the first standard siren analysis performed with DESI data, and includes the most complete spectroscopic sample used in a dark siren analysis to date. -
ABSTRACT We present an extension to a Sunyaev–Zel’dovich Effect (SZE) selected cluster catalogue based on observations from the South Pole Telescope (SPT); this catalogue extends to lower signal to noise than the previous SPT–SZ catalogue and therefore includes lower mass clusters. Optically derived redshifts, centres, richnesses, and morphological parameters together with catalogue contamination and completeness statistics are extracted using the multicomponent matched filter (MCMF) algorithm applied to the S/N > 4 SPT–SZ candidate list and the Dark Energy Survey (DES) photometric galaxy catalogue. The main catalogue contains 811 sources above S/N = 4, has 91 per cent purity, and is 95 per cent complete with respect to the original SZE selection. It contains in total 50 per cent more clusters and twice as many clusters above z = 0.8 in comparison to the original SPT-SZ sample. The MCMF algorithm allows us to define subsamples of the desired purity with traceable impact on catalogue completeness. As an example, we provide two subsamples with S/N > 4.25 and S/N > 4.5 for which the sample contamination and cleaning-induced incompleteness are both as low as the expected Poisson noise for samples of their size. The subsample with S/N > 4.5 has 98 per cent purity and 96 per cent completeness and is part of our new combined SPT cluster and DES weak-lensing cosmological analysis. We measure the number of false detections in the SPT-SZ candidate list as function of S/N, finding that it follows that expected from assuming Gaussian noise, but with a lower amplitude compared to previous estimates from simulations.
-
ABSTRACT A new class of white dwarfs, dubbed DAHe, that present Zeeman-split Balmer lines in emission has recently emerged. However, the physical origin of these emission lines remains unclear. We present here a sample of 21 newly identified DAHe systems and determine magnetic field strengths and (for a subset) periods that span the ranges of ≃6.5–147 MG and ≃0.4–36 h, respectively. All but four of these systems were identified from the Dark Energy Spectroscopic Instrument survey sample of more than 47 000 white dwarf candidates observed during its first year of observations. We present detailed analysis of the new DAHe WD J161634.36+541011.51 with a spin period of 95.3 min, which exhibits an anticorrelation between broad-band flux and Balmer line strength that is typically observed for this class of systems. All DAHe systems cluster closely on the Gaia Hertzsprung–Russell diagram where they represent ≃1 per cent of white dwarfs within that region. This grouping further solidifies their unexplained emergence at relatively late cooling times and we discuss this in context of current formation theories. Nine of the new DAHe systems are identifiable from Sloan Digital Sky Survey spectra of white dwarfs that had been previously classified as featureless DC-type systems. We suggest high-S/N (signal-to-noise ratios), unbiased observations of DCs as a possible route for discovering additional DAHe systems.
-
ABSTRACT We present the first eight months of data from our secondary target programme within the ongoing Dark Energy Spectroscopic Instrument (DESI) survey. Our programme uses a mid-infrared and optical colour selection to preferentially target dust-reddened quasi-stellar objects (QSOs) that would have otherwise been missed by the nominal DESI QSO selection. So far, we have obtained optical spectra for 3038 candidates, of which ∼70 per cent of the high-quality objects (those with robust redshifts) are visually confirmed to be Type 1 QSOs, consistent with the expected fraction from the main DESI QSO survey. By fitting a dust-reddened blue QSO composite to the QSO spectra, we find they are well-fitted by a normal QSO with up to AV ∼ 4 mag of line-of-sight dust extinction. Utilizing radio data from the LOFAR Two-metre Sky Survey (LoTSS) DR2, we identify a striking positive relationship between the amount of line-of-sight dust extinction towards a QSO and the radio detection fraction, that is not driven by radio-loud systems, redshift and/or luminosity effects. This demonstrates an intrinsic connection between dust reddening and the production of radio emission in QSOs, whereby the radio emission is most likely due to low-powered jets or winds/outflows causing shocks in a dusty environment. On the basis of this evidence, we suggest that red QSOs may represent a transitional ‘blow-out’ phase in the evolution of QSOs, where winds and outflows evacuate the dust and gas to reveal an unobscured blue QSO.
-
ABSTRACT The 1D power spectrum P1D of the Ly α forest provides important information about cosmological and astrophysical parameters, including constraints on warm dark matter models, the sum of the masses of the three neutrino species, and the thermal state of the intergalactic medium. We present the first measurement of P1D with the quadratic maximum likelihood estimator (QMLE) from the Dark Energy Spectroscopic Instrument (DESI) survey early data sample. This early sample of 54 600 quasars is already comparable in size to the largest previous studies, and we conduct a thorough investigation of numerous instrumental and analysis systematic errors to evaluate their impact on DESI data with QMLE. We demonstrate the excellent performance of the spectroscopic pipeline noise estimation and the impressive accuracy of the spectrograph resolution matrix with 2D image simulations of raw DESI images that we processed with the DESI spectroscopic pipeline. We also study metal line contamination and noise calibration systematics with quasar spectra on the red side of the Ly α emission line. In a companion paper, we present a similar analysis based on the Fast Fourier Transform estimate of the power spectrum. We conclude with a comparison of these two approaches and discuss the key sources of systematic error that we need to address with the upcoming DESI Year 1 analysis.